# MOVING WELL SOLUTION TO OPTIMAL, MULTI-OBJECTIVE GROUNDWATER USE

METHOD AND APPLICATION

T. Siegfried & W. Kinzelbach, 14.03.2011





# COMMON PROPERTY CHARACTERISTICS OF WATER RESOURCES

- Surface Water
  - Externalities in flow direction only
- Groundwater
  - Complex externalities depending on hydrogeology
- Type of externalities
  - quantity (volume/timing) & quality
  - negative & positive







## MULTIPLE OBJECTIVES IN WATER MANAGEMENT

- Key questions
  - What are the tradeoffs?
  - Gains & costs of Cooperation and implications for enforceability?
- Key task for answering those
  - Approximating the Pareto front



#### ALGORITHM

Multi-Objective Evolutionary Algorithm propagates a family of allocation strategies and improves them successively through concepts borrowed from natural evolution (selection / mutation / etc.)



#### APPLICATION -NORTH-WEST SAHARA AQUIFER SYSTEM

Transboundary (common-pool) fossil groundwater reserve shared by Algeria, Libya & Tunisia



## AQUIFERS

TC:Terminal Complex IC: Intercalary Continental



#### SOCIO-ECONOMIC DEVELOPMENT

year

year

Countries motivated by food security considerations & policies of self-sufficiency through import-substitution

Expected rise of groundwater pumping from 100 m<sup>3</sup>/s in 2010 to 500 m<sup>3</sup>/s in 2050

year

#### FUTURE

- Recharge: ~30 m<sup>3</sup>/s
- Stored volume: ~ 100'000 km<sup>3</sup>
- Exploitable volume: ~ 10'000 km<sup>3</sup>
- Future max. expected demand (year 2050): ~500 m<sup>3</sup>/s

#### FUTURE

- Recharge: ~30 m<sup>3</sup>/s
- Stored volume: ~ 100'000 km<sup>3</sup>
- Exploitable volume: ~ 10'000 km<sup>3</sup>
- Future max. expected demand (year 2050): ~500 m<sup>3</sup>/s
- → Supply theoretically secured for 600 years

#### FUTURE

- Recharge: ~30 m<sup>3</sup>/s
- Stored volume: ~ 100'000 km<sup>3</sup>
- Exploitable volume: ~ 10'000 km<sup>3</sup>
- Future max. expected demand (year 2050): ~500 m<sup>3</sup>/s
- → Supply theoretically secured for 600 years
- → Why worry?



#### ADVERSE DEVELOPMENTS

Declining piezometric levels → no more water harvesting 'for free'



### ADVERSE DEVELOPMENTS

- Deterioration of groundwater quality
- Widespread soil salinization and soil fertility decline



#### ADVERSE DEVELOPMENTS

Saline seawater intrusion along coastline

CI: Piezometric levels 1950

CI: Piezometric levels 2050



### ADVERSE DEVELOPMENTS

Forbiddingly high drawdowns over time, esp. in Algerian / Tunisian Chott regions



KEY QUESTION: Benefits from optimal, cooperative pumping?



#### APPROXIMATING THE PARETO SET

Coupled simulation & multi-objective optimization approach



Pareto (Trade-Off) Surface (present costs, year 2000)

Rise of per unit provision costs relative to year 2000 per unit costs

|         | Status Quo | Cooperation |
|---------|------------|-------------|
| Algeria | 35         | 8           |
| Tunisia | 31         | 3           |
| Libya   | 29         | 4           |

#### KEY FINDING

Per unit costs rise can be greatly reduced with intelligent pumping

- $\rightarrow$
- Each country can gain from following the 'best' cooperative strategy
- Gains are key incentives with regard to enforcement



well fields & aquifers















#### CHARACTERISTICS OF OPTIMAL SOLUTIONS

Intermittent pumping between aquifers & well fields

#### CONCLUSIONS

- Successful development of multi-objective optimization algorithm for approximating Pareto fronts
- Allows to identify optimal space-time pumping strategies in arbitrarily complex aquifers
- · Benefits & costs from cooperative resource use can be quantified
  - · In the case of the NWSAS, cooperation means coordination
- Crucial input for decision-making and subsequent bargaining



#### Contact

Tobias Siegfried hydrosolutions Itd., Zürich, Switzerland siegfried@hydrosolutions.ch