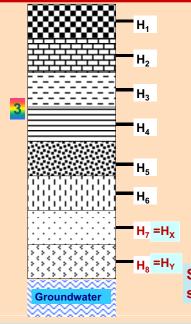
Retention of *Escherichia coli* and *Salmonella* sp by two soil layers closely topping groundwater table in equatorial region in Cameroon (Central Africa)

Moïse NOLA*, NJINE Thomas, MOUSSA DJAOUDA, Serge H. ZEBAZE TOGOUET, Norbert KEMKA,

Mireille Ebiane NOUGANG and Michel DJAH

University of Yaounde I, Faculty of Science, Laboratory of General Biology, PO Box 812 Yaounde, Cameroon.

* : correspondance: moise.nola@yahoo.com


Introduction

In many regions of the world, groundwater is still the main source of drinking water supply. Bacterial movement in soil is important in the pollution follow-up of the surface and underground waters. Knowledge of the adsorption capacity and kinetics of bacterial retention in soil could contribute to the scientific understanding of the microbiological quality of groundwater in specific soil types. The main purpose of this laboratory research was to assess the sorption kinetics of *Escherichia coli* and *Salmonella* sp on two soil layers H_x and H_y collected closely above a groundwater table in Yaounde, Cameroon (Central Africa). H_x is located above H_y which is located in close proximity of the water table.

Materials and Methods

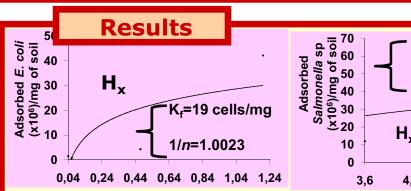
Site of study

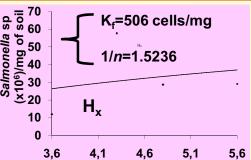
Soil layers sampling 2 a)Hole dug until the appearance of the groundwater table. b)Hole crossing 8 different soil layers H₁, H₂,...,H₈ c)Collection three kg samples from soil layers H_X(H₇) and of H_Y(H₈) and its drying at laboratory temperature (23±1° C) for several months.

	-	ers (H _X a eristics	ano n _y) cnem	icai
	pН	С	N	Р	WRC
		(mg/l)	(mg/l)	(mg/l)	(%)
H _x	4.435	4.140	0.100	17.425	41.55
H _Y	4.559	4.315	0.235	26.145	43.64
	WRC	: water i	retentio	n capa	citv

Soil layers sequences from soil surface to the groundwater table

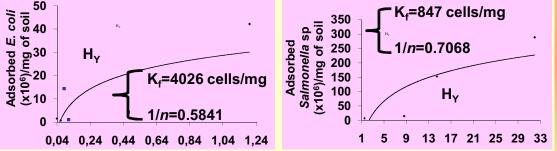
Laboratory experiments


5


a)Cells adsorption on soil layers particles b)Bacteriological analysis by CFU method (Endo and Wilson-Blair agar media) (Bio-Rad)

Freundlich isotherm: $C_s = K_f C^{1/n}$

- K_f: Freundlich adsorption coefficient (adsorption capacity),
- 1/n: linearity exponent (adsorption intensity).


Data analysis

Comment

*Adsorbed cell number increase swiftly at lower equilibrium planktonic cell concentrations.

6

*Adsorption of *Salmonella* sp on H_X would express a relatively less complexity of systems, and would depend on the lower difference in interactions energies among equilibriums.

Planktonic *E. coli* (x10⁶/ml) at equilibrium Planktonic Salmonella sp (x10⁶/ml) at equilibrium

Figure: Adsorption isotherms of *E. coli* and *Salmonella* sp on soil horizons H_x and H_y

*Adsorption coefficient of layer H_Y was positively correlated with the pH values and N/P ratios, and negatively with the values of C/N and C/P ratios.

*Variation of adsorption potentials of soil layers particles would be linked the adsorption sites properties located on the surface of soil particles, which can undergoes temporal variation.

*Variability in K_f and 1/n would be in part at the origin of the variability of the abundances of microbial species in groundwater.

Conclusion

Variation in adsorption potentials of soil layers particles would be linked the adsorption sites Properties located on the surface of soil particles, which can undergoes temporal variation. It seems convenient to carry out other experiments with several cell species together in order to predict the interactions nature among bacterial cells for the attach sites or group of sites on soil surface particles during microbial transport from soil surface to the groundwater.

References

Jucker B. A., Zehnder A. J. B., Harms H., 1998. Quantification of polymer interactions in bacterial adhesion. *Environ. Sci. Technol.*, 32: 2909-2915. -Nikolaev Y. A., 2000. Role of long-range interactions in the regulation of adhesion of *Pseudomonas fluorescens* cell. *Mikrobiologiya*, 69: 356-361

Acknowledgments

This work was supported by grant from *AIRE Deéveloppement* and by Fonds International de Coopération Universitaire – FICU (Agence Universitaire de la Francophonie