Closing down the mining in the Saar Region, Germany: Are we creating a transboundary "great man-made aquifer"?

> Thomas Walter LUA Saarland

Bundesarchiv, B 145 Bild-F015023-0007 Foto: Hoffel, v. | 1959 Anfang

Saarland

A small German state in the middle of Europe...

Sa Saarland

Land Landesamt für Umweltund und Arbeitsschutz

...with hundreds of years of Saarland industrial history

Landesamt für Umweltund Arbeitsschutz

5 large Foundries and steel mills since 15th century, thereof 3 still working with a total of 15,000 employed

Mining since pre-roman times, Systemstically since 18th century, Number of know shafts > 900

Coal mining in the Saar Region

Saarland

Saarland

Saarland

Saarland

Saarland

KVB-Model: calculation of coal resources in Germany as a cooperation project of the Geological Surveys of Northrine-Westphalia and Saarland and the German coal industry

Coal Volume and Mined Volume

Landesamt für Umweltund Arbeitsschutz

Јисн et. al, 1994; Јисн, 1997

Continuing pumping causes long term costs: ~ 20 Mio. €/a

Mine flooding seems to be unavoidable and therefore a flooding strategy is essential

first phase: flooding process	 Rising groundwater levels in densely populated regions 		
	Complex hydraulic structure makes mine rebound difficult to predict		
	 Additional damages to expect at the surface, due to buoyancy of the rock pile 		
second phase: long term problems	 Flooding will change the hydrogeochemical environment 		
	 Long term behaviour of void system? 		
	Long time stability of conduits?		

Pastor & al. (2007): Optimisation of mine water discharge by monitoring and modelling of geochemical processes and development of measures to protect aquifers and active mining areas from mine water contamination

Saarland

Landesamt für Umweltund Arbeitsschutz

Hydraulic System

Longwall Mining

Saarland

Fig. 1.7 Development of a Subsidence Trough (to an exaggerated vertical

Unmined rock		Natural porosity			
strata above mined coal seams: increased permeabilty through mechanical stress	Porosity		tertiary technical porosity		
Mined coal seams: large flat draining areas with high porosity ~20%)		רמווא וווממרפמ	secondary technical porosity		
Shafts and adits: system of regionally communicating conduits	Techni		primary technical porosity		

Groundwater Recharge

Saarland

Natural Analogon:

Saarland

Landesamt für Umweltund Arbeitsschutz

al Survey, used with permission).

Taylor & Greene: Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology

Mining systems could be considered and modeled as a *"*Technical Karst System" *,* Forming an Artificial Groundwater System

- Large hydraulic system with relevant pore volume
- Densely interconnected conduits with large diameters
- Goaf zones act as internal drainage zones with a very high internal surface
- Rock up to 1000 m depth unsaturated since more than 100 years

→Long and at least partially very fast flow paths →Enormous mineralisation potential

Saarland

Landesamt für Umweltund Arbeitsschutz

Prediction of Flooding Process

Box Model of the Saar Region (DMT)

Landesamt für Umweltund Arbeitsschutz

single homogeneous boxes representing available void volume hydraulic connections by geometrically correct representations of mine workings

Transboundary Sytem of Boxes

Saarland

Flooding Process of the Lorrainian Mines

Saarland

Linking Box and Groundwater Model

Saarland

The Karst analogon seems to be a reasonable approach, but

even if a 3D-model of the deposit already exists and geometrical information is available with a very high degree of reliability,

it most probably will turn out as not practible due to information overflow,

Solution: Finding the right balance between detailed view and overly simplification!

- It is fairly large
- It is obviously man-made
- It crosses an international boundary
- And it is capable to transport water over large distances

-> so it is a large transboundary man-made aquifer!

.... especially having in mind future mine closures (Germany, Poland, Ukraine etc.)