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ABSTRACT 

The aim of the HDR project Soultz is the geo
power production based on an artificially cre
exchanger at 5000 m depth.  
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It is of special interest that the above mentioned 
coincidence between productivity during and after 
stimulation appears to be valid also for GPK4 where 
tensile fracturing seems to be a significant 
stimulation process. For the conditions in Soultz, it is 
generally assumed that the dominant stimulation 
process is shearing of natural fractures. In view of the 
observations at GPK4, this assumption should further 
be investigated.  

In order to transfer the experiences of Soultz to other 
it is very important to understand to which 
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with volumes up to 30000 m3 and typical fl
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Subsequently, injection tests with significan
rates were performed to determine the prod
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The test site of the HDR project So
France on the western edge of th
some 50 km north of Strasbourg n
border.  
The objective of the project is the 
subsurface heat exchanger for geo
production. During the last years 
drilled in granite rock down to 50

 

ultz is located in 
e Rhine Graben, 
ear the German 

development of a 
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three wells were 
00 m. Two wells 

(GPK2 and GPK4) are planned for production 
whereas the central well (GPK3) will be the injection 
well. All the three wells were drilled from the same 
platform. The horizontal distance between the 
injection well and each of the production wells is 
appr. 600 m at the target depth of 5000 m (see Fig. 
1).  

observation is very important for plan
hydraulic stimulation operations sin
productivity enhancement is predictable. Th
pressure during stimulation is mainly control
rock stress. A higher injection rate leads to a higher 
productivity during stimulation and cons
afterwards. 
At the wells GPK2 and GPK3 a slight inc
downhole pressure was observ
with constant rate (50 l/s). This characteristic is
considered to be typical for shearing of frac
contrast, the stimulation of GPK4 was accom
by a slight but continuous pressure decrease 
usually observed in stimulation operations do
by tensile fracturing. Further indication (flow p
supports the assumption that jacking occurre
in the vicinit
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Fig. 1: Scheme of the borehole triplet in Soultz. The 

casing diameter is given in brackets. Inject.: 
injection well; Prod.: Production well.  
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initial productivity of around 0.02 l/
days of injection (Baria et al., 2002 p
The situation was different for th
GPK3. This well intersects a natural
structure in the open hole section an
initial productivity much higher 
GPK4. The initial productivity of G

orientation of the seismic clouds (for more det
see: Hettkamp et al., 2004). 
The main challenge of the project is the cre
artificial fractures and/or the stimulation o
fractures to form a hydraulic link between th
and to allow the circulation of water up to a
100 l/s. Therefore, each of the wells was subj
hydraulic stimulation by massive water.  
This study presents the main results of h
stimulations with focus on productivity c
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GPK2: 0.02 l/(s*bar) 
GPK3: 0.2 l/(s*bar) 
GPK4: 0.01 l/(s*bar) 

In order to allow the circulation 
discussed if only natural existing fracture
to stimulation or if artificial fractures ha
created too. 
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After drilling of GPK2 and GPK4, low-rate 
tests were performed to determine the i
productivity of both wells. (Productivit
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low rate injection test of GPK4 as an example. Th
obser ssure did not stabilize, meaning that the 
well productivity is time dependent. The extrapolat
differential pressure (≈ 60 bar) yields an init
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injection.  
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Figure 3 shows the differential pressures and flow 
rates for the three stimulation operations.  
The well GPK4 was stimulated twice. However, the 
injection volume at the second hydraulic stimulation 
was only slightly higher than at the first stimulation. 
It can be shown that the second stimulation of GPK4 
in 2005 hardly improved the productivity of the well. 
This stimulation will therefore not be discussed here.  
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Fig. 2: Downhole pressure and flow rate during the 
low rate injection test in GPK4 in Sept. 
2004. The wellhead pressure is not shown 
and can not be evaluated because of the lack 
of density data of the water column in the 
well during injection. TVD: True vertical 
depth. 
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GPK2 2000 6 23400 50 14000 
GPK3 2003 11 34000 50 21600 
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differential pressure is higher than at the other we
although the lowest flow rate (30 l/s) was injected 
only. Further, the pressure decreases slightly but 
continuously. Both features are indications for a 
fracturing process controlled by tensile fracturing and 
not by shearing.  
It is interesting to evaluate the differential pressure at 
the end phase of the stimulations particularly when 
the pressure is almost stabilized.  
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15 l/s over a time period of 7 days. The productivity 
of the well can directly be derived from the pressure 
d  after shut-in. Four days after shut-in, the 
pressure decreased by 42 bar as depicted in figure 4 
and thus resulting in a productivity of 0.35 l/(s*bar).  

the water column in between. A
formation pressure of 460 bar at
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differential pressure.  
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controlled by formation stress. The slight p
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friction losses in the fractures as the 
stimulated area extends.  
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pressure clearly depends on the flow rate a
pressure level is low compared to the 
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The corresponding injection tests in GPK3
were

nuary 2003 after 
he pressure is 
easured one at 

 and GPK4 
 conducted as step rate tests. Figure 5 illustrates 

the injection test at GPK3 in August 2004. The 
pressure at the last two injection periods and during 
shut-in can almost perfectly be matched with a fit 
based on a formation linear flow model.  
The pressure of a similar injection test in GPK4 
(March 2005) could also be fitted very well.  
The fitting curves were used to calculate the 
productivity versus time of the wells GPK3 and 
GPK4 (figure 6).  
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ncluded that 
GPK3 was higher 

stimulated than the region between GPK3 and GPK4. 
Hydraulic interference tests confirm this observation. 
The weak link between GPK3 and GPK4 is still the 
main issue of the reservoir development up to now.  
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Since the well productivity is time depende
necessary to evaluate the productivity after a
equivalent to the stimulation period in 
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Thus, the post stimulation productivity is essentially 
the same as at the end of stimulation. The stimulated 
fractures obviously retain their hydraulic conductivity 
completely.  
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The azimuthal orientation of seismic events can be 
visualized in horizontal depth slices within the depth 
range of 4900-5000 m, where the most seismic events 
occured (figure 8). Figure 7 and figure 8 clearly show 
that predominantly planar structures have been 
stimulated that are aligned in a strike direction of N-S 
to NW-SE.  

-2000-1500-1000-5000500
Northing (m)

3000

3500

4000

4500D
ep

th
 (m

)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

GPK 4

GPK 3

GPK 2

 
stimulation. GPK2 was
50 l/s for a period of 
effectively stimulated o
(see above) whereas GPK4 was subje
stimulation for 3 days. The corre
productivities after stimulation are (rounded
l/(s*bar)): 



The events during the stimulation of GPK2
are concentrated along the direction N145°E
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FLOWLOGS 

Indications about the fracturing 
vicinity of the well can also be 
flowlogs. Figure 9 shows flowlog
GPK4. The flow profile of GPK3 c
as typical for the Soultz wells if the e
GPK2 and from shallower wells 
One outlet (here at about 4700 m) do
profile and accounts for more than 
outflow. However, the flow profile
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 explanation of this discrepancy might 
be that tensile fracturing was the dominating process 
only in the early stimulation phase. Later on, when 
the tensile frac extended and natural fractures were 
reached, shear displacement on these surfaces 
became the dominant failure mechanism. On a larger 
scale – conclusions based on the spatial distribution 
of seismic events can only be drawn on a larger scale 
– shearing controls the stimulation process in 
accordance with seismicity.  
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DISCUSSION AND CONCLUSION 
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ntly occurred in the geothermal project of 
Basel (Switzerland). However, if selected intervals of 
a well are stimulated one after another by water 
injections (multifrac), the water volume for each 
operation can be reduced. The result of each frac can 
be predicted and the overall productivity should be 
the sum of the individual frac operations. Thus, a 
multifrac concept could be a more advantageous 
stimulation concept especially to minimize the 
seismic risk.  
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