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Summary 

 

Authors: Lukas Wimmer, Nicolas Wagener 
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Surrounding 
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Mapping 

 

The products of this report aim to provide support for urban planning for the city 

of Barisal and its surrounding areas. Based on optical and radar satellite data, 

maps on recent land use and urban development, river course changes and rainy 

season inundation are created. 

A dense urban centre running along the Kirtonkhola River characterizes land-use 

in the city of Barisal. The suburbs are dominated by rural settlements that lie in 

close proximity to agricultural used land. Frequent inundation is visible in the 

riverine areas and in areas that belonged to a river in the past. The city centre 

does not experience seasonal inundation. Significant anthropogenic overprints of 

former riverbeds by agricultural land-use and settlement development are 

identified using the river shifting change detection in the surroundings east of 

Barisal.  
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1 Introduction to Remote Sensing 
Remote sensing has been variously defined, but basically is the science that describes 

the collection of physical information, interpretation and extraction of information 

acquired over an object or area of interest without having physical contact, by the use 

of remote sensing instruments. The term information refers to a wide range of 

observable quantities, such as reflected solar radiation across the electromagnetic 

spectrum and emitted thermal radiation measured from handheld, unmanned aerial 

vehicle (UAV), airborne or spaceborne imaging sensors and received back-scattered 

microwave radiation equipment. Availability and effective exploitation of such data has 

facilitated advances in many applied fields (CHAMBELL, 1996; USTIN, 2004) 

The availability and capacity of remote sensing data is comprehensive and huge, 

therefore the application of remote sensing data to identify and monitor land surfaces 

and environmental conditions has expanded enormously and remotely sensed data 

are an essential tool in natural resource management. Climatic changes, 

desertification processes, forest fires, glaciers melting, water pollution, land cover and 

vegetation status can be observed thanks to remote sensors onboard of aircraft or 

satellites orbiting around the earth. Remote sensors onboard of aircraft and satellites 

allow for a synoptic view of the earth surface at different wavelengths of the 

electromagnetic radiation at the same time (multi-spectral, -frequency), with (high-) 

frequent time interval and scale (multi-resolution). 

Sensors can be divided into two groups: Passive sensors depend on an external 

source of energy, usually the sun. Sun radiation is reflected and emitted from the earth 

surface and collected by a wide variety of optical sensors. Active sensors have their 

own source of energy. These sensors send out a signal and measure the amount 

reflected back, and do not depend upon varying illumination conditions (PRASAD ET AL., 

2011) (see Fig. 1). 
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Figure 1: Passive and active sensors (Source: BGR). 

 

1.1 Fundamentals of Optical Remote Sensing 
Optical remote sensing involves acquisition and analysis of optical data, based on solar 

illumination and the detection of electromagnetic radiation reflected from targets on the 

ground. Optical Remote Sensing deals with those part of electromagnetic spectrum 

characterized by the wavelengths from the visible (from 0.4 µm) to the near infrared 

(NIR) and short wave infrared (SWIR) up to thermal infrared (TIR, 15 µm), collecting 

radiation reflected and emitted from the observed surfaces (see Fig. 1). 

Optical remote sensing is a passive technique for earth observation, which is exposed 

to a strong interaction of the electromagnetic radiation within the atmosphere at its 

operating frequencies and to the presence of clouds. Both factors constitute important 

limitations on the potential observation of the earth’s surface.  

Analysis is based on the spectral differences of materials, as materials reflect and 

absorb differently at different wavelengths, resulting in a specific and unique “spectral 

footprint”. Thus, the targets can be differentiated by their spectral reflectance 

signatures in the remotely sensed images (SABINS, 1996; RENCZ, 1999). 

Optical remote sensing systems are classified depending mainly on the number of 

spectral bands used in the imaging process. Advances in imaging hardware enabled 

availability of high spatial, spectral and temporal resolution (PRASAD ET AL., 2011). 
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A wide range of applications is still based on multispectral imaging systems e.g. 

Sentinel-2, Landsat-OLI, even so hyperspectral sensors show rapid development on 

all platforms from UAV to spaceborne carriers. 

 

1.2 Fundamentals of RADAR Remote Sensing 
RADAR is an acronym for RAdio Detection And Ranging and describes an object-

detection and active imaging system using radio waves (see Fig. 1). The 

electromagnetic waves used for imaging radars have wavelengths in the order of 

several centimeters up to roughly one meter. Since earth’s atmosphere has a high 

penetrability in this part of the electromagnetic spectrum, radar-imaging systems are 

highly independent from weather conditions in the atmosphere. 

The accuracy of an imaging radar is defined by two measures: the resolution along the 

line-of-sight (range resolution) and the resolution along the flight path of the carrier 

platform (azimuth resolution). The azimuth resolution depends on the antenna 

aperture: the larger the distance to the area of interest, the larger the antenna must be. 

For space-borne missions this leads to unrealistic demands on the size of the antenna 

mounted on the satellite (WOODHOUSE, 2006). To overcome this obstacle, Synthetic 

Aperture Radar (SAR) exploits the Doppler Effect to synthesize a larger virtual antenna 

through the combination of several return signals (echoes).  

The signal received at the sensor has a frequency variation induced as a result of the 

platform motion. This effect is known as Doppler shift, a well-known phenomenon in 

physics. Since the resolution depends on the time, a particular object on the ground is 

illuminated by the radar beam, making use of the Doppler shift to combine several 

backscattered echoes effectively results in increasing the duration of irradiation. As 

this is in effect equal to increasing the antenna aperture size of which the illumination 

time is a direct function, the term Synthetic Aperture Radar (SAR) is used to describe 

such an imaging system (RICHARDS, 2009). 

SAR sensors are usually mounted on an airborne or space-borne platform and have a 

side-looking imaging geometry. While the carrier platform moves forward, the SAR 

system continuously emits and receives electromagnetic pulses. The emitted radiation 

interacts with objects on the surface that will then backscatter a portion of the signal to 

the sensor. How big that portion will be, depends on the physical and electrical 

properties of the objects (FORNANO & PASCAZIO, 2014). At the sensor, both amplitude 

and phase of the backscattered signal are received (MOREIRA ET AL., 2013). 
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While the amplitude is related to the object properties (material, roughness, dielectric 

properties, etc.), the phase is a function of the sensor-target distance. 

Synthetic aperture radar (SAR) remote sensing is used today in a wide range of 

applications and offers a number of complementary and additional capabilities with 

regard to optical remote sensing. For instance, it can be used to acquire images at 

night and almost weather independent, to determine soil moisture, biomass or to 

measure terrain deformations. The ranging capabilities of SAR are used in various 

ways. Radar interferometry (InSAR) is one such application and allows the estimation 

of ground deformation and / or topography from (at least) two SAR acquisitions making 

use of the phase information contained in both images. Multi-temporal InSAR 

approaches such as Persistent Scatterer Interferometry (PSI) allow the precise 

estimation (with millimeter accuracy) of surface deformation for specific point targets 

over long time periods. 
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2 Products 

2.1  Land-use Map 
The fast growing population and the trend to move to urban areas leads to a dynamic 

change in land use. New urban areas are developed by filling agricultural land with 

river sand to make the building ground more resilient to flooding (see Fig. 2). 

The overall goal of this analysis is the comprehensive mapping of the 2019 land-use 

in Barisal to derive information on existing and newly established filled areas. The 

resulting maps will be used in further analyses together with a geomorphological map 

as a basis for the regionalization of drilling points. Freely available optical satellite data 

and a supervised classification method allow for the mapping of the land-use. 

 

Land-use maps using the classes “Water”, “Bare Soil”, “Urban”, “Rural Settlements” 

and “Agriculture” are provided for November 2019. An overview map shows the land-

use of the study area as well as the surrounding rural areas (Fig. A2). A map, focusing 

on the study area presents the land-use within the city of Barisal (Fig. A3).  

Figure 2: Filling of agricultural land with river sand in Faridpur. Photo: L. Wimmer, 11/2019. 
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The main focus of this analysis is the distribution of filled and non-filled areas from the 

land-use map by reclassification of the five above-mentioned classes. A third map 

presents these areas within the study area of Barisal (Fig. A4). 

To process the land-use maps, a supervised classification method based on 

interactively selected training areas is used. These areas are interactively chosen from 

the original satellite image and represent the spectral properties of a certain land-use 

class. The supervised classification classifies the satellite image by comparing all the 

image values with the selected training areas. 

 

Data 

The land use classification is based on a cloud-free image from the Copernicus 

Sentinel-2 mission for the period of the Bangladesh dry season between October and 

April and the transition times before and after it. To be able to receive results on the 

most recent land-use and in order to map water areas comprehensively, a satellite 

image from the early dry season 2019/2020 is required. Different atmospheric 

conditions during the sensing times of the images can result in different image features 

of the same ground objects. Therefore, atmospheric corrected images are mandatory, 

to allow comparison with future land use maps based on Sentinel-2 data. An 

atmospheric correction eliminates the atmospheric effects in an image and results in a 

surface reflectance image that characterizes the spectral surface properties. The 

atmospherically corrected image, showing the overview area cloud-free, from the 28. 

November 2019 is used for further processing (see Annexure C: Data).  

As input for the land use mapping, all bands with the resolution of 10m and 20m of the 

image are used (Tab. 1). This selection enables the classification method to accurately 

characterize the land-use classes by using all available spectral properties of the 

ground objects.  
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Table 1: Overview of the Copernicus Sentinel-2 satellite image used for the classification. Blue color represents 

the spectral band subset used in the analysis. 

Sensing Date Bands Wavelengths Spatial Resolution 

28.11.2019 

1 Coastal Aerosol 417nm – 471nm 60m 

2 Blue 399nm – 595nm 10m 

3 Green 515nm – 605 nm 10m 

4 Red 627nm – 703nm 10m 

5 

Near Infrared 

685nm – 723nm 20m 

6 722nm – 758nm 20m 

7 754nm – 810nm 20m 

8 690nm – 980nm 20m 

8A 832nm – 898nm 20m 

9 Water Vapor 919nm – 971nm 60m 

10 Cirrus 1299nm – 1449nm 60m 

11 
Shortwave Infrared 

1471nm – 1757nm 20m 

12 1960nm – 2444nm 20m 

 

Methods 

The workflow of the classification is visualized in Fig. 3. 

 

Preprocessing 

To prepare the image for the classification, a spatial subset and a spectral subset are 

created. The spatial subset shows an overview of the study area of Barisal as well as 

the surrounding rural areas (Fig. A1). The spectral subset includes the above-

mentioned (Tab. 1) Sentinel-2 bands (Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12). Subsequent, 

all image bands with 20m resolution are resampled to a 10m spatial resolution to keep 

the information of the higher resolution 10m bands.  

 

Classes and Training Areas 

The purpose of the land-use classification is to derive information on urban settlement 

structures. Accordingly, the two classes “Urban" and "Rural Settlements" are used for 

the description of these structures. “Agriculture" and "Bare Soil" are chosen to describe 

the undeveloped areas in general. Water areas are represented by the class "Water".  
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Figure 3: Workflows of the Land-use classification. 
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These classes are based on the CORINE Landcover (CLC) program (EUROPEAN 

ENVIRONMENT AGENCY, 2019). CORINE Landcover is a program of the European 

Commission to standardize the most important forms of land cover for environmental 

policy development. The standardized classes are based on biophysical 

characteristics of the Earth’s surface (EUROPEAN ENVIRONMENT AGENCY, 2017).  

“Water” includes all open water bodies, such as river, canals, channels, lakes and 

ponds. “Bare Soil” includes all surfaces of bright bare soil, such as riverbanks, 

pointbars and filled areas for urban development. “Urban” includes residential and 

industrial buildings without tree cover. Furthermore, it includes streets, railway lines 

and sealed surfaces. “Rural Settlements” include the city suburbs and rural villages 

that have tree coverage. “Agriculture” are all areas of farmland, such as cropland (rice, 

vegetables, etc.) or pasture land (for cattle, goats, etc.).  

Training areas for all classes are selected from the Sentinel-2 dataset (see Tab. 2). To 

receive an acceptable classification result, the training areas must be both 

representative and complete for their land-use classes (LILLESAND ET AL., 2015). 

All land-use classes have non-uniform spectral characteristics in common. For 

example, in the “Urban” class, the spectral characteristics of tin shacks and high-rise 

buildings differ. The “Agriculture” class includes spectral characteristics of different 

crops and in the “Water” class, different water qualities also differ spectrally. Different 

soil types in the “Bare Soil” class also have different spectral characteristics. The “Rural 

Settlements” class contains areas with different tree species, which result in different 

spectral characteristics. 

The training areas of the land-use classes are required to represent these different 

spectral characteristics. The number of training areas therefore depends on the 

spectral variability within a land-use class (see Tab. 2). 

The training areas are dispersed throughout the Sentinel-2 dataset to increase the 

representation of all variations in the land-use classes (LILLESAND ET AL., 2015).  
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Table 2: Overview of the number of training areas per class. 

Class Number of Training Areas 

Agriculture 25 

Bare Soil 10 

Rural Settlements 10 

Urban 15 

Water 15 

 

To show the spectral variabilities of the individual classes, the spectral profiles of the 

classes are shown in Fig. 4. Each curve represents the averaged spectral signatures 

of all training areas per class, based on the Sentinel-2 data set of 28.11.2019. Fig. 4 

shows the spectral separability of the classes over the whole band range (see Tab. 1). 

 

 

Figure 4: Mean values of the spectral signatures of the training areas. 

 

The spectral curves of the classes “Agriculture” and “Rural Settlements” have similar 

spectral signatures. The reason for these similarities is that the class “Rural 

Settlements” is dominated by tree coverage and therefore represents a strong 

vegetation signal. 
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Both classes show vegetation-typical characteristics, such as the "red edge" (a 

significant increase of reflection in the near infrared bands 5 and 6 compared to the 

visible bands 2 to 4). The main differences are a higher reflectance of the class 

“Agriculture” in bands 3 to 5/11 and 12 and a higher reflectance of the class “Rural 

Settlements” in bands 6 to 8A.  

The spectral signature of “Water” shows higher reflection values around band 6 to 8A 

leading to the interpretation that the water class/signature contains impurities, such as 

sediments. Pure water would have zero reflectance in these longer wavelengths.  

The spectral signature of the class “Urban” shows a relatively continuous increase and 

is similar to the signature of “Bare Soil”. The main difference between both spectral 

signatures is a higher “Urban” reflectance in the shortwave-infrared compared to a 

lower reflectance of “Bare Soil” in this wavelength range. 

 

Classification 

To perform the supervised classification, the Support Vector Machine (SVM) classifier 

is selected, a method based on statistical learning theory. Support Vector Machines 

are supervised learning models with associated learning algorithms that analyze data 

used for classification. 

The classifier looks at spectral boundaries between individual classes in the 

multidimensional feature space. It aims to find an optimal margin (known as 

“hyperplane”) to separate the classes. The data values that constrain the width of the 

margin are known as “support vectors” (JONES & VAUGHAN, 2010). 

In its simplest form, a SVM separates two classes (a binary classifier). Nevertheless, 

a classification with multiple classes is possible. Based on the training areas, several 

binary classifiers are calculated which separate the properties of each class from those 

of every other class (known as “one-versus-one” approach). The number of binary 

classifiers depends on the number of classes to be separated: 

 

𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 =
𝑛𝑐𝑙𝑎𝑠𝑠 ∗ (𝑛𝑐𝑙𝑎𝑠𝑠 − 1)

2
 

The variable 𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 represents the number of classifiers; the variable 𝑛𝑐𝑙𝑎𝑠𝑠 

represents the number of classes.  
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Therefore, the properties of the five classes of this investigation are separated using 

10 binary classifiers (Tab. 3 shows an example of possible connections of classes), as 

a result the classes are differentiated spectrally. Each classifier designates a class 

name to every pixel, the most frequent class name assigns the pixel to the final class 

(RICHARDS, 2013). 

 

Table 3: The table shows all possible connections of classes (cf. RICHARDS, 2013). 

Number of binary classifiers Class name 1 Class name 2 

1 Agriculture Bare Soil 

2 Agriculture Rural Settlements 

3 Agriculture Urban 

4 Agriculture Water 

5 Bare Soil Rural Settlements 

6 Bare Soil Urban 

7 Bare Soil Water 

8 Rural Settlements Urban 

9 Rural Settlements Water 

10 Urban Water 

 

Post-Processing 

The same object feature may be classified in different classes due to spectral 

variabilities. The classification result might show single isolated pixels of one class in 

the area of  another class (LILLESAND ET AL., 2015). 

To remove the single isolated pixels in the classification image, a sieve filter is applied. 

This filter replaces all pixel patches that are smaller than twelve pixels by the value of 

the surrounding neighbor class. A pixel patch is a group of pixels that share their sides 

or have connected angles. The final classification result is shown in Fig. A2 and A3. 

 

Calculation of filled and non-filled areas 

Based on the knowledge of the GSB colleagues and the experience gained during 

fieldwork, all urbanized areas and settlement structures in Barisal are developed on 

filled areas. Therefore, those areas are considered as filled areas, the classes “Urban” 

and “Rural Settlements” are reclassified to “Filled” and the classes “Water”, “Bare Soil” 

and “Agriculture” are reclassified to “Non-filled” (see Fig. A4). 
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Accuracy Assessment 

During the accuracy assessment, randomly distributed test samples are used to 

compare the classification result with an independent high-resolution reference 

dataset. As a high-resolution reference dataset, free accessible Google Earth satellite 

images are used.  Thus, details for a more precise interpretation of the actual land use 

become visible and the classification result can be assessed visually without having 

the necessity to collect ground truth information during fieldwork. 

LILLESAND ET AL. (2015) recommends using at least 50 test samples per class for 

accuracy assessment. Following this recommendation, 250 test samples are randomly 

distributed in the image, using 50 samples for each class (Tab. 4).  

 
Table 4: Accuracy Assessment, Sentinel-2 dataset (28.11.2019). 

Sentinel-2, 
28.11.2019 

Reference  

Agriculture Bare Soil 
Rural 

Settlements 
Urban Water 

Row 
Total 

User’s 
Accuracy 

(%) 

C
la

s
s
if
ic

a
ti
o

n
 

Agriculture 44 1 5 0 0 50 88.0 

Bare Soil 2 42 0 2 4 50 84.0 

Rural 
Settlements 

3 0 46 1 0 50 92.0 

Urban 0 6 2 40 2 50 80.0 

Water 0 0 1 0 49 50 98.0 

 
Column Total 49 49 54 43 55 250  

Producer’s 
Accuracy (%) 

89.79 85.71 85.18 93.02 89.09   

Cohen’s Kappa 
per Class 

0.8 0.82 0.87 0.79 0.97   

Overall 
Accuracy (%) 

88.4       

Overall Kappa 0.86       

 
Since the images from Google Earth represent a compilation of different points in time, 

the Sentinel-2 dataset is used as an auxiliary dataset. Both data sets were acquired at 

different stages of flooding. Therefore, the visual impression of the Sentinel-2 dataset 

is given priority over the data from Google Earth when assigning water areas. Based 

on these datasets, land-use classes are interactively assigned to the test sample 

classes. Following this, the test areas are compared with the classification results to 

receive the accuracy measures (Tab. 4).  
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The overall accuracy of the classification is 88.4 %. The Kappa coefficient, a measure 

for the agreement between classification result and reference shows a good result of 

0.86. The User's Accuracy shows how reliable the classified pixels represent actual 

land use, while Producer's Accuracy shows how well an object class has been correctly 

classified. In addition, the Kappa coefficients of each class are displayed in order to 

individually evaluate the reliability of the classification result. 

The “Water” class shows a User’s Accuracy of 98.0 % with a high corresponding  

Kappa coefficient of 0.97. The “Rural Settlements” (92.0 %) and the “Agriculture” (88.0 

%) also show a high User’s Accuracy, compared to the classes “Bare Soil” and “Urban” 

with the lowest accuracies 84.0 % (“Bare Soil”) and 80.0 % (“Urban”). This is also 

visible in the Kappa coefficients, so that the agreement between the classification result 

and the reference data is 0.87 (“Rural Settlements”) and 0.8 (“Agriculture”) compared 

to 0.82 (“Bare Soil”) and 0.79 (“Urban”). 

 

The reason for lower accuracy values of the classes “Agriculture”, “Bare Soil” and 

“Urban” (see Tab. 4) is related to different circumstances:  

For example, the spectral signature of the class “Agriculture” shows similarities to the 

spectral signature of the class “Rural Settlements” (Fig. 4). Therefore, agricultural 

areas having similar spectral characteristics as the rural settlement areas may 

therefore be classified incorrectly and lead to a lower User’s Accuracy. 

Table 4 also shows that four samples of “Bare Soil” were classified as “Water”. Fig. 4 

already shows a higher reflection of water in bands 6 to 8A. This higher reflection and 

therefore the misclassification may be related to impurities (e.g. a higher sediment 

load) inside of the water bodies. 

The lowest accuracy value (80.0 % User’s Accuracy) of the “Urban” class may be 

related to a mixed-pixel problem in the Sentinel-2 dataset. Individual residential or 

industrial buildings may be smaller than the resolution of the Sentinel-2 dataset (10m 

x 10m). As a result, a pixel represents a mixture of urban buildings and other surfaces 

(e.g. soil or trees). This mixture can lead to misclassification. Due to the high-resolution 

reference image, it is possible to interactively determine the main content of a pixel 

(e.g. urban buildings) and to assign it to the test sample classes. The mixed pixels of 

the Sentinel-2 dataset can thus lead to a lower accuracy in the "Urban" class. 
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The overall visual impression of the classification result (Fig. A2), as well as the overall 

accuracy and the overall Kappa coefficient (Tab. 4) show a good result and 

representation of the actual land-use. 

 

2.2 River Shifting Change Detection Map 
Rivers in Bangladesh are highly dynamic and underlie severe changes in location and 

intensity during a few years. During a few decades, rivers may change whole 

landscapes. The overall goal of this analysis is to provide information on the changes 

of the Meghna river system course and the direction of shifting. The river system 

includes the water bodies and pointbars. A regional map covers these changes from 

the area of Faridganj in the northeast to the area of Bauphal in the southwest (Fig. A5). 

Local changes inside this area are presented in a map showing only the city of Barisal 

(Fig. A16). The main focus is the mapping of present areas of the river system and 

former areas which were active in the past decades but are inactive recently. River 

course maps are provided for six time slices (1973, 1980, 1990, 2000, 2010 and 2019) 

(Fig. A8-A13). The change detection map shows data of the time slices with the highest 

difference in river system areas (1973, 2000 and 2019) (Fig. A8-A13, A15). A map 

focusing on the Barisal study area shows present and former river system areas using 

all six time slices (Fig. A16). 

 

Data 

To carry out the analysis, cloud-free optical images from Landsat Multispectral 

Scanner System MSS, Landsat Thematic Mapper TM and Copernicus Sentinel-2 

missions are used. These are available during the period of the Bangladesh dry season 

between October and April, and images from January and February are used in the 

analysis. A comparison between images of different years is only possible when the 

target features (e.g. water) can be identified in all the images by similar response 

signal. This can be ensured by using images of the same month in every year of the 

analysis.  

Starting 1973, one image per decade is used (1973, 1980, 1990, 2000, 2010 and 

2019). To enable comparability between the final river shifting products, only bands 

from the Landsat and Copernicus Sensors with similar wavelengths positions have 

been chosen for processing (see Tab. 5 and Annexure C: Data). 
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Table 5: Overview of the satellite images and their bands used for the analysis (EUROPEAN SPACE AGENCY 

2017; UNITED STATES GEOLOGICAL SURVEY n.d.). 

Mission Sensing Date 
Bands (B), Spatial Resolution/ Wavelengths  

Green NIR  

Landsat MSS 
02.02.1973 B4, 60m 

0.5-0.6 µm 
 

B7, 60m 
0.8-1.1 µm 
 02.02.1980 

Landsat TM 

07.01.1990 

B2, 30m 
0.52-0.6 µm 

B4, 30m 
0.76-0.90 µm 

19.01.2000 

30.01.2010 

Sentinel-2 01.02.2019 
B3, 10m 
0.538-0.583 µm 

B8, 20m 
0.76-0.97 µm 

 

Methods 

The workflow of the analysis is visualized in Fig. 5. 

 

Atmospheric Correction 

Different atmospheric conditions during the sensing times of the images can result in 

a different image feature of the physically same ground objects. Therefore, to enable 

the comparison between all the images, an atmospheric correction is mandatory. An 

atmospheric correction eliminates the atmospheric effects in an image and results in a 

surface reflectance image that characterizes the surface properties.  
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Landsat MSS; Landsat TM; Sentinel-2 

GREEN, NIR 

Atmospheric Correction 

Landsat MSS: DOS1; Landsat TM: Level-2; Sentinel-2: sen2cor 

NDWI 
(MCFEETERS, 1996) 

Threshold setting 

Clipping river system and adjacent areas  

Vectorization 

to eliminate water bodies without connection to the main river system 

Figure 5: Workflow of the River Shifting Change Detection analysis. 

Rasterization 

with charecteristic values for change detection 

Change 
Detection Map 

Present/former 

river areas Map 
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Sentinel-2 and Landsat TM images are already atmospherically corrected and surface 

reflectance data are available for download (free Sentinel-2 download from Copernicus 

Open Access Hub and free Landsat TM download from USGS EarthExplorer). 

The Sentinel-2 atmospheric correction is based on physical principals, physical-based 

algorithms use radiative transfer methods, which are simplified models of the radiation 

pathway from source to sensor, to model atmospheric scattering and absorption 

(LILLESAND ET AL., 2015). Auxiliary data such as water vapor data, atmospheric 

pressure or a digital elevation model are added to receive more precise information for 

the correction. The effects in the atmosphere are quantified by the model and used to 

calculate the surface reflectance values. 

The Landsat TM surface reflectance “products are generated by a specialized software 

called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)” 

(LEDAPS PRODUCT GUIDE, 2020). Similar to the Sentinel-2 atmospheric correction, 

LEDAPS is also a physical-based algorithm that fits a radiative transfer model and 

includes auxiliary data to receive the atmospherically corrected surface reflectance 

product.  

The Landsat MSS image is corrected by using the DOS1 (Dark Objects Subtraction) 

method. CHAVEZ (1996) describes that the methods “[…] basic assumption is that 

within the image some pixels are in complete shadow and their radiances [if above 

zero] received at the satellite are due to atmospheric scattering (path radiance). This 

assumption is combined with the fact that very few targets on the Earth’s surface are 

absolute black, so an assumed one-percent minimum reflectance is better than zero 

percent.” (CHAVEZ, 1996). The calculated radiance-value based on this assumption is 

used for the correction of the whole Landsat MSS image (image –based correction).  

It is important to mention that the accuracy of an image-based correction technique is 

lower than a physically based correction (e.g. as applied for Sentinel-2) (CONGEDO, 

2016). Nevertheless, CONGEDO (2016) states that image-based corrections “are very 

useful when no atmospheric measurements are available as they can improve the 

estimation of land surface reflectance” (CONGEDO, 2016). 

 

Calculation of Normalized Difference Water Index (NDWI) 

Using the respective bands of the images (Tab. 5), the NDWI is calculated (see Fig. 

A6). The Normalized Difference Water Index (NDWI) (MCFEETERS, 1996) uses the 

green and near-infrared bands to delineate open-water features. 
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Water surfaces show high reflections in the green and low reflections in the near-

infrared wavelength region (see Fig. 6). 

 

These differences are used to calculate an index that enhances the presence of open 

water features and suppresses the presence of soil and vegetation (MCFEETERS, 

1996). The Waterindex is calculated as follows, using the respective bands of the 

satellite image: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

 

The generated index map contains values in the range of -1 to +1 (see Fig. A6), while 

excluding zero. Positive values are interpreted as water features. Soil and vegetation 

features have negative values (MCFEETERS, 1996). 

 

Processing steps 

At first, a threshold value is applied to discriminate between values that belong to the 

river system (water-bodies and pointbars) and all other values. This threshold value is 

defined manually by inspecting the pixels of the different NDWI images (see Tab. 6). 

 

 

Green 

Bands 

NIR Bands 

Figure 6: Reflectance of water, soil and vegetation at different wavelengths; the wavelength areas used by the 
NDWI are highlighted in green (green bands) and red (NIR bands), modified after SEOS-PROJECT.EU, 2020. 
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Table 6: Thresholds to discriminate between river system and other values. 

NDWI image of the year Threshold 

1973 -0.25 

1980 -0.2 

1990 -0.06 

2000 -0.08 

2010 -0.03 

2019 -0.15 

 

The application of the thresholds results in maps that only show water-body and 

pointbar areas differentiated from other areas (see Fig. A7 as an example).   

Based on these threshold maps, an area is clipped interactively (due to computing 

limitations of QGIS regarding data quantity) that covers mainly the river system 

(including water bodies and pointbars) and adjacent areas. In the next step, all 

remaining pixels of the river system in the clipped images are assigned the value “1”, 

whereas the areas below the threshold (see Tab. 6) are assigned NA.  

The resulting image still includes many small objects that lie outside of the main 

riversystem (e.g. small ponds, agricultural canals). To eliminate these water bodies 

having no connection to the main river system, the raster data are vectorized and single 

isolated polygons are automatically eliminated, based on the assumption that the main 

river area shows in one connected polygon. 

The results of all processed years are overlain to visualize the different extents (Fig. 

A8-A13). The three results with the greatest differences in extent are selected 

interactively and then processed for the change detection map: years 1973, 2000 and 

2019 (Fig. A15). 

 

Change Detection Map 

The goal of the change detection map is to provide information on the changes of the 

Meghna river system course and the direction of shifting. The changes are visualized 

in a single map. The conversion of the vector map (polygons) back to a raster map 

enables to present different river areas with characteristic values in a single map. 

 



21 
 

A unique year-dependent characteristic value is assigned to the cells of each new 

raster image (see Tab. 7). The raster cell size is set to 20 m, as this is the pixel size, 

needed by the successive project analyses. 

The yearly products are joined to receive the change detection map of the area of the 

Meghna river system for the different years (see Tab. 8).  

 

Table 7: Overview of the characteristic values per year. 

 1973 2000 2019 

Characteristic 
value 

1 10 100 

 

Table 8: Legend of the raster values in the change detection map. 

Raster value Area of the Meghna river system in 

1 1973 

10 2000 

11 1973, 2000 

100 2019 

101 1973, 2019 

110 1973, 2000 

111 1973, 2000, 2019 

  

 

Mapping present and former river system areas 

In the Barisal study area, the information of all results (1973, 1980, 1990, 2000, 2010, 

2019) are included into a map that presents present and former areas of the Meghna 

river system.  

 

Present areas are defined as the area of the Meghna river system in 2019.  

 

Former areas are defined as the area of the Meghna river system in all years 

before 2019 but not in 2019.  

 

The polygons of each year are rasterized. A unique year-dependent characteristic 

value is assigned to the cells of each new raster image (see Tab. 9). The raster cell 

size is set to 20 m, as this is the pixel size, needed by the successive project analyses. 
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The individual results are joined. The values of the map represent the area of the 

Meghna river system in different years (see Tab. 10). To reduce the values to present 

or former areas, the raster is reclassified into two classes (see Tab. 10). Areas where 

the river is not classified in 2019, are defined as former and are assigned with a value 

of “1”. Areas, which show the river system in 2019, are defined as present and are 

assigned with the value of “2”. 

 

Table 9: Overview of the characteristic values per year for the mapping of present/ former river system areas.  

 1973 1980 1990 2000 2010 2019 

Characteristic 
value 

1 10 100 1000 10000 100000 

 

Table 10: Legend of the raster cell values in the map of present/former river system areas. 

Characteristic 

value 
Area of the Meghna river system in 

Reclassified value 

(1=former/2=present) 

1 1973 1 

10 1980 1 

11 1973, 1980 1 

100 1990 1 

101 1973, 1990 1 

110 1980, 1990 1 

111 1973, 1980, 1990 1 

1000 2000 1 

1001 1973, 2000 1 

1010 1980, 2000 1 

1011 1973, 1980, 2000 1 

1100 1990, 2000 1 

1101 1973, 1990, 2000 1 

1110 1980, 1990, 2000 1 

1111 1973, 1980, 1990, 2000 1 

10000 2010 1 

10001 1973, 2010 1 

10010 1980, 2010 1 

10011 1973, 1980, 2010 1 
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10100 1990, 2010 1 

10101 1973, 1990, 2010 1 

10110 1980, 1990, 2010 1 

10111 1973, 1980, 1990, 2010 1 

11000 2000, 2010 1 

11001 1973, 2000, 2010 1 

11010 1980, 2000, 2010 1 

11011 1973, 1980, 2000, 2010 1 

11100 1990, 2000, 2010 1 

11101 1973, 1990, 2000, 2010 1 

11110 1980, 1990, 2000, 2010 1 

11111 1973, 1980, 1990, 2000, 2010 1 

100000 2019 2 

100001 1973, 2019 2 

100010 1980, 2019 2 

100011 1973, 1980, 2019 2 

100100 1990, 2019 2 

100101 1973, 1990, 2019 2 

100110 1980, 1990, 2019 2 

100111 1973, 1980, 1990, 2019 2 

101000 2000, 2019 2 

101001 1973, 2000, 2019 2 

101010 1980, 2000, 2019 2 

101011 1973, 1980, 2000, 2019 2 

101100 1990, 2000, 2019 2 

101101 1973, 1990, 2000, 2019 2 

101110 1980, 1990, 2000, 2019 2 

101111 1973, 1980, 1990, 2000, 2019 2 

110000 2010, 2019 2 

110001 1973, 2010, 2019 2 

110010 1980, 2010, 2019 2 

110011 1973, 1980, 2010, 2019 2 

110100 1990, 2010, 2019 2 
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110101 1973, 1990, 2010, 2019 2 

110110 1980, 1990, 2010, 2019 2 

110111 1973, 1980, 1990, 2010, 2019 2 

111000 2000, 2010, 2019 2 

111001 1973, 2000, 2010, 2019 2 

111010 1980, 2000, 2010, 2019 2 

111011 1973, 1980, 2000, 2010, 2019 2 

111100 1990, 2000, 2010, 2019 2 

111101 1973, 1990, 2000, 2010, 2019 2 

111110 1980, 1990, 2000, 2010, 2019 2 

111111 1973, 1980, 1990, 2000, 2010, 2019 2 

 

Results and Discussion 

The resulting maps are added in Annexure A (A5-A16) and described in this section. 

For better orientation, topographical information and some in Bangladesh well-known 

cities are included in the final map visualization of the remote sensing based products.  

 

Extent of the Meghna river system and its water body 
As already mentioned, the NDWI values greater than the threshold lead to the 

classification of a larger area than just the water bodies as it includes water bodies and 

pointbars. All together is interpreted as full extent (maximum water coverage) of the 

Meghna river system based on discussions with the GSB colleagues. As an example, 

Figure A14 shows the NDWI result for 2019 with a threshold greater than -0.15 overlain 

on the Sentinel-2 RGB 432 image from 2019. It is visible that the water body and 

pointbars are included into the result.  

Figure A8 to A13 show in blue the extents of the Meghna river system (based on NDWI) 

in the years of 1973, 1980, 1990, 2000, 2010 and 2019.  

The different levels of details between the final maps are caused by the different spatial 

resolutions of the images. Due to the higher spatial resolution, Sentinel-2 shows more 

details than Landsat TM and Landsat MSS (Tab. 5).  

It can be summarized, that the general shape of river system for the different years is 

visible in all decades.  
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Change Detection Map 
Based on the NDWI evaluations, the change detection map is calculated (Fig. A15). 

This map includes information on the shifting direction of the river system, together 

with the locations of land-loss and possible land-gain. Furthermore, it shows which 

regions were part of the river system for the period between 1973 and 2019 (Fig. A15, 

dark blue).  

In several regions of the river areas, changes in time are observable (Fig. A15):  

Section A shows the relocations of several rivers west of the Meghna River. A major 

change here is the formation of numerous meander bows over the last decades. 

Turquoise color indicates the location of the river system in 1973; light orange shows 

it in the year 2000, dark orange in both years of 2000 and 2019. Red color indicates 

the position of the river system in 2019 only. In several meandering bows, the color 

sequence turquoise-light orange-orange-red can be seen. This sequence exhibits the 

continuous erosion of the river into one direction. For Section A (Fig. A15), it can be 

stated that this area of the Meghna River system due to erosion in numerous sections 

of the river system has developed into a more meandering system over the past few 

decades. As a result, from today's perspective, there are numerous former riverbeds 

that are now used for agriculture or have been integrated into the settlement area. 

Such former riverbeds and their current use should be evaluated for suitability when 

developing new urban areas. 

 

A comparable, but considerably larger shift is evident in section B. Here, the river shifts 

over the decades towards the north, visible in the color sequence turquoise-light 

orange-orange-red. It is obvious that the location of the river in 1973 (shown in 

turquoise) is clearly separated from the current (2019) location of the river (shown in 

orange and red). Compared to a 2019 Sentinel-2 satellite image (see Fig. A5), it can 

be stated that agricultural and village settlement structures have developed in this 

area. This is evident from the dark green tree structures characteristic of rural 

settlements (see Fig. A5, section B). Together with the results from section A, it can 

be concluded that former riverbeds are reused for agriculture or settlement within a 

few years after riverbed relocation. 

 

Section C shows a large-scale erosion surface that developed between the years 2000 

and 2019 (see Fig. A15). A dark blue part of the Meghna River is visible in the western 
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part of the section. This color shows that the river was at this same location during all 

time slices (1973, 2000, and 2019). Immediately to the east, a narrow orange-colored 

stripe is visible, defining the position of the river in 2000 and 2019. The large red area 

to the east shows the position of the river in 2019. The dark blue-orange-red sequence 

exhibits that the river has moved significantly in the north-eastward direction within two 

decades (2000 - 2019).  

 

Section D shows a shifting of the Meghna River to the south-west (Fig. A15). The dark 

blue-orange-red sequence, which is visible from the center of the section to the south-

west, indicates a constant erosion after 1973. It is visible that the orange area is wider 

than the red area. That shows the erosion of a larger area until the year 2000 compared 

to the erosion of a smaller area shown in red until the year of 2019.  

 

Overall the sections C and D show an erosion-driven growth of the south-eastern 

region of the Meghna River. This growth movement can be observed at both the 

eastern and the western riverbanks within the decades since 1973 (Fig. A15).  

 

In summary, the Change Detection Map in Figure A15 shows significant changes of 

the Meghna river system between the years of 1973 and 2019. 

Of particular note is that most former riverbeds are used for agriculture and settlement 

development. If these areas should be considered as development sites for a future 

urbanization, the shifting history of the river system must be assessed as part of a 

suitability analysis. 

 

Present and former river areas in the Barisal study area 

In the Barisal study area, the change detection map shows present and former areas 

(Fig. A16). The map allows locating areas of sedimentation processes (former areas) 

and provides indications on other geo-related processes (e.g. liquefaction-prone 

areas). West of the Kirtonkhola River, close to the urban areas of Barisal, larger areas 

of former riverbed are visible, these areas should be evaluated for their suitability for 

urban development in Barisal. 
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2.3 Inundation Map 
Due to climate change, Bangladesh is experiencing an increase in rural-urban 

migration movements. Therefore, the demand for safe building ground is very high. 

One result is an increasing lateral growth of urban areas. However, urban growth is 

limited to suitable building ground and eligible areas are often low-lying and therefore 

prone to flooding during the yearly monsoon season between May and October. 

Planning agencies may benefit from geodata on inundation-prone areas that are 

reliable, available frequently and sustainable, easy to process and easily 

understandable. 

The overall objective of this analysis is to receive a map that gives an overall 

impression on the frequency of inundation in areas that are at risk of flooding (Fig. A17) 

for the years 2015 to 2020. The analysis is carried out using 12 Sentinel-1 radar images 

from 2015 to 2020 and a threshold approach to differentiate between inundated and 

non-inundated areas. To ensure an easy processing of the large amount of multi-

temporal radar data, the analysis is carried out using the online processing tool Google 

Earth Engine (see the programming code in Annexure B).  

The Bangladesh Water Development Board (BWDB) already established inundation 

mapping using Sentinel-1 datasets. In their annual flood reports, the BWDB is using 

an inundation map to verify the output of a flood-forecasting model (BANGLADESH 

WATER DEVELOPMENT BOARD 2018, pp. 92-93).  

The location of the city of Barisal on the Kirtonkhola River favors busy shipping traffic 

(see Fig. A20, sections A and B). In the radar images, shipping traffic is visible due to 

a different backscatter compared to the water surfaces (see Fig. A18, section A). 

Different man-made objects, like the Shaheed Abdur Rab Serniabat Bridge, are also 

visible due to a deviation from the water surface’s backscatter. In Fig. A17 the shipping 

traffic and man-made objects differentiate as separated units in the inundation map. 

 

Data 

The analysis is based on Copernicus Sentinel-1 images starting 2015, with operation 

of the Sentinel-1 sensor. 

Google Earth Engine states to preprocess the images using the Sentinel-1 Toolbox to 

receive radiometrically calibrated images, terrain corrected and thermal noise removed 

(GOOGLE EARTH ENGINE DATA CATALOG, 2020). 
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A data selection from the rainy season in Bangladesh is required to map the maximum 

inundation. The selected images are acquired in “IW” (interferometric wide swath), the 

default acquisition mode of Sentinel-1 (EUROPEAN SPACE AGENCY, 2020). To 

differentiate between water and non-water pixels, the VH polarization is selected. 

Preliminary works in the study areas have shown that VH is the most suitable 

polarization for the detection of water. The respective spatial resolution of the VH 

polarization images is 10 meter. 

The Bangladesh rainy season is roughly between May and October of each year. 

Depending on the year, the time of maximum inundation for the study area of Barisal 

is in the months between June and August (see Tab. 11). This assumption is based 

on the flood reporting by the BWDB (see e.g. BANGLADESH WATER DEVELOPMENT BOARD 

2017, 2018, 2019) and by interactively assessing and selecting the images from a 

period that show the largest inundated areas. Since the exact dates of maximum 

inundation of a year are unknown, all available images of the respective months of 

each year are processed in this analysis.  

Finally, using the above-mentioned benchmarks, 12 Sentinel-1 images of descending 

orbits are selected for the processing (e.g. Annexure B: lines 12-23). Annexure C: Data 

lists the images in a table. 

 

Table 11: Months of maximum inundation in the years 2015-2020. 

Year Month(s) of maximum inundation 

2015 July 

2016 June 

2017 August 

2018 July 

2019 July/August 

2020 August 

 

Method 

The workflow of the processing in Google Earth Engine is visualized in Fig. 7. The 

selected images of each year are combined and mean values are calculated. The 

mean-value images are subsetted to fit the extent of the study area (see Fig. A18; 

Annexure B, lines 24-29).  
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Thresholding 

Water surfaces appear in black and dark gray colors in the averaged amplitude images 

(see Fig. A18). In order to identify a threshold value, the values of assumed water and 

non-water image areas are identified interactively. Based on experience in the 

definition of thresholds discriminating between water and non-water surfaces, the 

identified threshold values in Bangladesh range from -20 dB to -22 dB. For the Barisal 

study area, a threshold value including values smaller than -21 dB is chosen and 

applied to images from all years (Annexure B, lines 109-118). The output image only 

shows pixels smaller than the threshold, representing the inundated areas of each year 

(see Fig. A29).  

All areas that have been inundated between 2015 and 2020, are compiled by 

combining the threshold images of all years into one image (see Fig. A17; Annexure 

B, lines 120-122). The result is exported with a 20m spatial resolution, which is a 

requirement for further analyses in the project (Annexure B, lines 128-140). 

 



30 
 

 

Figure 7: Workflow of the Google Earth Engine processing of the inundation mapping method. 
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Results and Discussion 

The resulting map presents the areas and frequencies of inundation between 2015 and 

2020 (see Fig. A17).  

The map exhibits three major areas: (1) The city area of Barisal, west of the Kirtonkhola 

river which only shows rarely inundated areas in the years from 2015-2020. (2) The 

rural area that stretches west of the city of Barisal in a north-south direction and shows 

frequent inundation and less frequent inundation further inland compared to areas near 

the river. (3) Frequently inundated areas in the south around Barisal University, east 

of the Kirtonkhola River. 

Many small areas in the Barisal city area are inundated yearly, representing ponds and 

lakes as they partially overlap with the water bodies in the topographic base map (data 

of the Survey of Bangladesh and OpenStreetMap). Nevertheless, the majority of 

frequently inundated areas is located in the outskirts of Barisal (see Fig. A17). 

The rural agricultural areas in the west of Barisal city, which are not in close proximity 

to the rivers, have the lowest frequency of inundation (Fig. A17). These areas have 

been inundated once or twice during the study period between 2015 and 2020. The 

agricultural areas closer to the river show higher frequency of five to six times of 

inundation within the period between 2015 and 2020. (e.g. section A, Fig. A17). Figure 

8 shows such an area that is used for rice cultivation during the dry season and is 

frequently inundated during the rainy season. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Agricultural area in section A, View to the north-east. During the rainy season, 
the shown area is frequently inundated. Photo: L. Wimmer, 12/2018. 
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Section B shows a floodplain, lying north of the Junhar River (see Fig. A17). Due to its 

natural proximity to the river, the floodplain shows a frequent inundation of three to six 

inundations between 2015 and 2020. The generally low-lying terrains, which are only 

slightly elevated above the river’s water level, show also large inundated areas during 

the months outside of the rainy season (see Fig. 9; Fig. 9b exhibits inundation in the 

beginning of December 2018). 

 

The analysis of the river shifting change detection shows that the area of today’s 

floodplain in section B (Fig. A17, see also Figure 9) has been part of the water body of 

the Junhar River since 1973 (see chapter 2.2).  

Immediately east of the urban area of Barisal at the riverbank on the Kirtonkhola River, 

section C exhibits an area that was inundated two to four times during the period of 

2015 to 2020 (see Fig. A17, section C). Similar to the floodplain in section B, the 

analysis of the river shifting change detection revealed that this area was part of the 

Kirtonkhola River in earlier decades (see chapter 2.2). In today’s times, this area is not 

a part of the River anymore, but is subjected to frequent inundation during the rainy 

seasons. 

Section D shows the area around Barisal University (see Fig. A17, section D). The 

center of the section is characterized by less frequent inundation with one to two 

inundations during the study period. On the other side, areas near the Kirtonkhola 

River, were inundated more frequently – four to six times – during the study period. 

The southern part of section D shows a large frequently inundated area, which may 

occur due to the confluence of two rivers (see Fig. A17). 

 

(a) (b) 

Figure 9: Floodplain north of the Junhar River in section B that is frequently inundated during the rainy season. (a) 

View to the west; (b) View to the east. Photo: L. Wimmer, 12/2018. 

 

 



33 
 

It can be concluded that between 2015 and 2020 for the rainy season mainly areas in 

the rural outskirts of Barisal were inundated. Additionally, areas near the rivers had a 

higher frequency of inundation during this period. Former parts of the rivers nowadays 

also show a higher inundation frequency. 
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Annexure A: Maps 
 

Figure A1: Sentinel-2 Dataset of the Barisal Region, 18.11.2019 (RGB 4-3-2). 
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Figure A2: Land use in November 2019 in region of Barisal based on Sentinel-2 data.
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Figure A3: Land use in November 2019 in the Barisal study area based on Sentinel-2 data. 
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Figure A4: Status of urban development in November 2019 in the Barisal study area based on Sentinel-2 data. 
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Figure A5: Overview of the region around Barisal (Sentinel-2, RGB 432, 01.02.2019). 

B
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Figure A6: Normalized Difference Water Index (NDWI), based on Sentinel-2 imagery (01.02.2019). 
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Figure A7: Normalized Difference Water Index (NDWI), based on Sentinel-2 imagery (01.02.2019), threshold of -0.15. 
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Figure A8: Location of the Meghna river system based on NDWI from 1973. 
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Figure A9: Location of the Meghna river system based on NDWI from 1980. 
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Figure A10: Location of the Meghna river system based on NDWI from 1990. 
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Figure A11: Location of the Meghna river system based on NDWI from 2000. 
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Figure A12: Location of the Meghna river system based on NDWI from 2010. 
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Figure A13: Location of the Meghna river system based on NDWI from 2019. 
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Figure A14: Area of the Meghna river system based on NDWI from 2019. 
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Figure A15: Change detection of the Meghna river system of February 1973, January 2000 and February 2019. 

A 
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Figure A16: Present and former areas of the Meghna river system in Barisal. 
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Figure A17: Inundation in June/July 2015-2020 in Barisal study area. 
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Figure A18: Combined Sentinel-1 image of June/July 2020 in Barisal study area. 
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Figure A19: Inundation in June/July 2020 in Barisal study area. 
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Figure A20: Sentinel-2 dataset of the study area of Barisal.  
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Annexure B: Google Earth Engine Code 
 

// Select Area of Interest (pa = uploaded SHP of Barisal study area) 1 

pa = pa.geometry(); 2 

// Center the map with focus on the study area 3 

Map.centerObject(pa); 4 

 5 

 6 

// 2015 7 

// Define start and end date of the study period 8 

var start_wet = '2015-07-01'; 9 

var end_wet = '2015-07-31'; 10 

 11 

// Load the Sentinel-1 image collection 12 

var S1_wet15 = ee.ImageCollection('COPERNICUS/S1_GRD') 13 

// Filter: Return only Vertical-Horizontal (VH) polarization images 14 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 15 

// Filter: Return only images with the main acquisition mode IW 16 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 17 

// Filter: Return only descending orbit images 18 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 19 

// Filter: Return only images with a 10 m resolution 20 

.filterMetadata('resolution_meters','equals',10) 21 

// Filter: Return only images within the study period 22 

.filterDate(start_wet, end_wet) 23 

// Filter: Return only images within the study area 24 

.filterBounds(pa) 25 

// Calculate the mean of all remaining images 26 

.reduce(ee.Reducer.mean()) 27 

// Clip the mean-image to the study area 28 

.clip(pa); 29 

// Print the image information to the console 30 

print(S1_wet15) 31 

 32 

 33 

// 2016 34 

var start_wet = '2016-06-01'; 35 

var end_wet = '2016-06-30'; 36 

 37 

var S1_wet16 = ee.ImageCollection('COPERNICUS/S1_GRD') 38 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 39 
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.filter(ee.Filter.eq('instrumentMode', 'IW')) 40 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 41 

.filterMetadata('resolution_meters','equals',10) 42 

.filterDate(start_wet, end_wet) 43 

.filterBounds(pa) 44 

.reduce(ee.Reducer.mean()) 45 

.clip(pa); 46 

print(S1_wet16) 47 

 48 

// 2017 49 

var start_wet = '2017-08-01'; 50 

var end_wet = '2017-08-31'; 51 

 52 

var S1_wet17 = ee.ImageCollection('COPERNICUS/S1_GRD') 53 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 54 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 55 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 56 

.filterMetadata('resolution_meters','equals',10) 57 

.filterDate(start_wet, end_wet) 58 

.filterBounds(pa) 59 

.reduce(ee.Reducer.mean()) 60 

.clip(pa); 61 

print(S1_wet17) 62 

 63 

//2018 64 

var start_wet = '2018-07-01'; 65 

var end_wet = '2018-07-31'; 66 

 67 

var S1_wet18 = ee.ImageCollection('COPERNICUS/S1_GRD') 68 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 69 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 70 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 71 

.filterMetadata('resolution_meters','equals',10) 72 

.filterDate(start_wet, end_wet) 73 

.filterBounds(pa) 74 

.reduce(ee.Reducer.mean()) 75 

.clip(pa); 76 

print(S1_wet18) 77 

 78 

//2019 79 

var start_wet = '2019-07-01'; 80 

var end_wet = '2019-08-31'; 81 
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var S1_wet19 = ee.ImageCollection('COPERNICUS/S1_GRD') 82 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 83 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 84 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 85 

.filterMetadata('resolution_meters','equals',10) 86 

.filterDate(start_wet, end_wet) 87 

.filterBounds(pa) 88 

.reduce(ee.Reducer.mean()) 89 

.clip(pa); 90 

print(S1_wet19) 91 

 92 

//2020 93 

var start_wet = '2020-08-01'; 94 

var end_wet = '2020-08-31'; 95 

 96 

var S1_wet20 = ee.ImageCollection('COPERNICUS/S1_GRD') 97 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 98 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 99 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 100 

.filterMetadata('resolution_meters','equals',10) 101 

.filterDate(start_wet, end_wet) 102 

.filterBounds(pa) 103 

.reduce(ee.Reducer.mean()) 104 

.clip(pa); 105 

print(S1_wet20) 106 

 107 

// Set threshold to distinguish between water and non-water 108 

var threshold = -21 109 

 110 

// Filter every image collection to the defined threshold 111 

var S1_wet_threshold15 = S1_wet15.select('VH_mean').lt(threshold); 112 

var S1_wet_threshold16 = S1_wet16.select('VH_mean').lt(threshold); 113 

var S1_wet_threshold17 = S1_wet17.select('VH_mean').lt(threshold); 114 

var S1_wet_threshold18 = S1_wet18.select('VH_mean').lt(threshold); 115 

var S1_wet_threshold19 = S1_wet19.select('VH_mean').lt(threshold); 116 

var S1_wet_threshold20 = S1_wet20.select('VH_mean').lt(threshold); 117 

 118 

// Combining all images to get one image with six classes 119 

var final_img = 120 

S1_wet_threshold15.add(S1_wet_threshold16).add(S1_wet_threshold17).add(S1_w121 

et_threshold18).add(S1_wet_threshold19).add(S1_wet_threshold20); 122 

// Visualize the final result 123 
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Map.addLayer(final.updateMask(final_img),{palette:"0000FF"},'Water 124 

extent’,1); 125 

 126 

// Export the image to the Drive 127 

Export.image.toDrive({ 128 

// Definition of the image 129 

  image: final_img, 130 

// Description 131 

  description: 'Barisal_Inun_Map', 132 

// Resolution in meter 133 

  scale: 20, 134 

// Study area 135 

  region: pa, 136 

// Format of the raster 137 

  fileFormat: 'GeoTIFF' 138 

}); 139 

 140 

Export.image.toDrive({ 141 

  image: S1_wet20.select("VH_mean"), 142 

  description: 'Barisal_2020_image', 143 

  scale: 10, 144 

  region: pa, 145 

  fileFormat: 'GeoTIFF' 146 

}); 147 

 148 

Export.image.toDrive({ 149 

  image: S1_wet_threshold20, 150 

  description: 'Barisal_2020_inundation', 151 

  scale: 10, 152 

  region: pa, 153 

  fileFormat: 'GeoTIFF' 154 

}); 155 
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Annexure C: Data 
 

Optical satellite images 

 

Landsat naming convention 

Image name: LXSS_LLLL_PPPRRR_YYYYMMDD_yyyymmdd_CC_TX 

Group Meaning 

LXSS L: Landsat 
X: Sensor 

“M” (MSS), “T” (TM) 

SS: Satellite 
“01” (Landsat 1), “03” (Landsat 3), “05” 

(Landsat 5) 

LLLL Processing correction level: “L1TP”, “L1GT”, “L1GS”, “L2SP” 

PPPRRR PPP: WRS path RRR: WRS row 

YYYYMMDD Acquisition year, month, day 

yyyymmdd Processing year, month, day 

CC Collection number: “01”, “02”, … 

TX 
Collection category: 
“RT” (Real-Time), “T1” (Tier 1), “T2” (Tier 2) 

Source: usgs.gov/faqs/how-can-i-tell-difference-between-landsat-collections-data-and-landsat-data-i-have-downloaded 

(Accessed on 20-07-2020). 
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Data (Landsat MSS, Level-1) 

Year Image name Product 

1973 LM01_L1TP_147044_19730202_20200909_02_T2 River Shifting Change Detection Analysis 

1980 LM03_L1TP_147044_19800202_20200905_02_T2 River Shifting Change Detection Analysis 

 

Data (Landsat TM, Level-2) 

Year Image name Product 

1990 LT05_L2SP_137044_19900107_20200916_02_T1 River Shifting Change Detection Analysis 

2000 LT05_L2SP_137044_20000119_20200907_02_T1 River Shifting Change Detection Analysis 

2010 LT05_L2SP_137044_20100130_20200825_02_T1 River Shifting Change Detection Analysis 

 

Sentinel-2 naming convention 

Image name: MMM_MSIXXX_YYYYMMDDHHMMSS_Nxxyy_ROOO_Txxxxx_<Product Discriminator> 

Group Meaning 

MMM Mission ID: “S2A”, “S2B” 

MSIXXX Product level: “Level-1C”, “Level-2A” 

YYYYMMDDTHHMMSS Sensing start time, date and time separated by character “T”  

Nxxyy PDGS processing baseline number 

ROOO Relative orbit number 

Txxxxx Tile number 

Source: sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention (Accessed on 20-07-2020). 
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Data 

Year Image name Product 

2019 

S2A_MSIL2A_20190201T043011_N0211_R133_T46QBK_20190201T082036 River Shifting Change 

Detection Analysis 

S2A_MSIL2A_20190201T043011_N0211_R133_T46QBL_20190201T082036 River Shifting Change 

Detection Analysis 

S2A_MSIL2A_20191128T043131_N0213_R133_T46QBL_20191128T083132 Land-Use Classification 

 

RADAR satellite images 

Sentinel-1 naming convention 

Image name: MMM_BB_TTTR_LFPP_YYYYMMDDTHHMMSS_ YYYYMMDDTHHMMSS_OOOOOO_DDDDDD_CCCC 

Group Meaning 

MMM Mission Identifier: “S1A”, S1B” 

BB Mode/Beam: “S1/S2/S3/S4/S5/S6”, “IW/EW/WV” 

TTTR TTT: Product Type 

“RAW”, “SLC”, “GRD”, “OCN” 

R: Resolution Class 

“F” (Full), “H” (High), “M” (Medium) 

LFPP L: Processing Level 

“0”, “1”, “2” 

F: Product Class 

“S” (Standard), “A” (Annotation) 

PP: Polarization 

“SH” (single HH) 

“SV” (single VV) 

“DH” (dual HH+HV) 

“DV” (dual VV+VH) 

YYYYMMDDTHHMMSS Product start time, separated by the character “T” 
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YYYYMMDDTHHMMSS Product end time, separated by the character “T” 

OOOOOO Absolute orbit number at product start time 

DDDDDD Mission data-take identifier 

CCCC Product unique identifier 

Source: sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/naming-conventions (Accessed on 20-07-2020). 

 

Data: Inundation Mapping 

Year Image Name 

2015 S1A_IW_GRDH_1SDV_20150706T235549_20150706T235614_006697_008F55_901C 

2016 S1A_IW_GRDH_1SDV_20160606T235552_20160606T235617_011597_011B95_8496 

2017 
S1A_IW_GRDH_1SDV_20170824T235558_20170824T235623_018072_01E586_FF38 

S1A_IW_GRDH_1SDV_20170812T235557_20170812T235622_017897_01E03B_D81A 

2018 
S1A_IW_GRDH_1SDV_20180714T235602_20180714T235627_022797_0278AA_BFC4 

S1A_IW_GRDH_1SDV_20180726T235603_20180726T235628_022972_027E33_0CE9 

2019 

S1A_IW_GRDH_1SDV_20190709T235608_20190709T235633_028047_032AE1_EBE3 

S1A_IW_GRDH_1SDV_20190721T235609_20190721T235634_028222_033027_D84D 

S1A_IW_GRDH_1SDV_20190802T235609_20190802T235634_028397_03357D_AEEC 

S1A_IW_GRDH_1SDV_20190826T235611_20190826T235636_028747_03414E_B972 

2020 
S1A_IW_GRDH_1SDV_20200808T235616_20200808T235641_033822_03EBE2_0A06 

S1A_IW_GRDH_1SDV_20200820T235617_20200820T235642_033997_03F204_62E3 

 


