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Summary

Authors: Lukas Wimmer, Nicolas Wagener

Title: Remote Sensing Information for Urban Planning of Satkhira Town and
Surroundings

Keywords: Land-Use Classification; River Change Detection; Inundation
Mapping; Interferometric Synthetic Aperture Radar (INSAR); Ground Motion

The products of this report aim to provide support for urban planning for the city
of Satkhira and its surrounding areas. Based on optical and radar satellite data,
maps on recent land use and urban development, river course changes, rainy
season inundation and ground motion are created.

Land-use in the Satkhira study area is characterized by a relatively small urban
area surrounded by large agricultural areas and polders that are seasonally
inundated or waterlogged throughout the year. Significant anthropogenic
overprints of former river parts by agricultural land-use are identified using the
river shifting change detection in the surroundings of Satkhira. Frequent
inundation is showing up in the polder areas around Satkhira; the city centre
does not experience seasonal inundation.

Ground motion maps are created using two different multi-temporal
Interferometric SAR (INSAR) approaches, Persistent Scatterer Interferometry
(PSI) and Small Baseline Subset (SBAS) and two different types of SAR data:
medium-resolution Sentinel-1 data and high-resolution TerraSAR-X data. In
total, three different INSAR datasets (two PSI and one SBAS) are created.

There are great differences in the spatial coverage of the three datasets. The
Sentinel-1 based SBAS dataset and the TerraSAR-X based PSI dataset achieve
a significantly higher spatial coverage than the Sentinel-1 based PSI dataset.
Nonetheless, the results are mostly coherent with each other and reveal that
most of the city centre can be considered stable or moving only slightly over the
observation period. Points of strong subsidence are mostly found on or around
newly built structures and are likely related to the building load of these
structures.
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1 Introduction to Remote Sensing
Remote sensing has been variously defined, but basically is the science that describes

the collection of physical information, interpretation and extraction 3f information
acquired over an object or area of interest without having physical contact, by the use
of remote sensing instruments. The term information refers to a wide range of
observable quantities, such as reflected solar radiation across the electromagnetic
spectrum and emitted thermal radiation measured from handheld, unmanned aerial
vehicle (UAV), airborne or spaceborne imaging sensors and received back-scattered
microwave radiation equipment. Availability and effective exploitation of such data has
facilitated advances in many applied fields (CHAMBELL, 1996; USTIN, 2004)

The availability and capacity of remote sensing data is comprehensive and huge,
therefore the application of remote sensing data to identify and monitor land surfaces
and environmental conditions has expanded enormously and remotely sensed data
are an essential tool in natural resource management. Climatic changes,
desertification processes, forest fires, glaciers melting, water pollution, land cover and
vegetation status can be observed thanks to remote sensors onboard of aircraft or
satellites orbiting around the earth. Remote sensors onboard of aircraft and satellites
allow for a synoptic view of the earth surface at different wavelengths of the
electromagnetic radiation at the same time (multi-spectral, -frequency), with (high-)
frequent time interval and scale (multi-resolution).

Sensors can be divided into two groups: Passive sensors depend on an external
source of energy, usually the sun. Sun radiation is reflected and emitted from the earth
surface and collected by a wide variety of optical sensors. Active sensors have their
own source of energy. These sensors send out a signal and measure the amount
reflected back, and do not depend upon varying illumination conditions (PRASAD ET AL.,
2011) (see Fig. 1).
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Figure 1: Passive and active sensors (Source: BGR).

1.1 Fundamentals of Optical Remote Sensing
Optical remote sensing involves acquisition and analysis of optical data, based on solar

illumination and the detection of electromagnetic radiation reflected from targets on the
ground. Optical Remote Sensing deals with those part of electromagnetic spectrum
characterized by the wavelengths from the visible (from 0.4 um) to the near infrared
(NIR) and short wave infrared (SWIR) up to thermal infrared (TIR, 15 um), collecting
radiation reflected and emitted from the observed surfaces (see Fig. 1).

Optical remote sensing is a passive technique for earth observation, which is exposed
to a strong interaction of the electromagnetic radiation within the atmosphere at its
operating frequencies and to the presence of clouds. Both factors constitute important
limitations on the potential observation of the earth’s surface.

Analysis is based on the spectral differences of materials, as materials reflect and
absorb differently at different wavelengths, resulting in a specific and unique “spectral
footprint”. Thus, the targets can be differentiated by their spectral reflectance
signatures in the remotely sensed images (SABINS, 1996; RENCZ, 1999).

Optical remote sensing systems are classified depending mainly on the number of
spectral bands used in the imaging process. Advances in imaging hardware enabled

availability of high spatial, spectral and temporal resolution (PRASAD ET AL., 2011).



A wide range of applications is still based on multispectral imaging systems e.g.
Sentinel-2, Landsat-OLI, even so hyperspectral sensors show rapid development on
all platforms from UAV to spaceborne carriers.

1.2 Fundamentals of RADAR Remote Sensing
RADAR is an acronym for RAdio Detection And Ranging and describes an object-

detection and active imaging system using radio waves (see Fig. 1). The
electromagnetic waves used for imaging radars have wavelengths in the order of
several centimeters up to roughly one meter. Since earth’s atmosphere has a high
penetrability in this part of the electromagnetic spectrum, radar-imaging systems are
highly independent from weather conditions in the atmosphere.

The accuracy of an imaging radar is defined by two measures: the resolution along the
line-of-sight (range resolution) and the resolution along the flight path of the carrier
platform (azimuth resolution). The azimuth resolution depends on the antenna
aperture: the larger the distance to the area of interest, the larger the antenna must be.
For space-borne missions this leads to unrealistic demands on the size of the antenna
mounted on the satellite (WoobHoUSE, 2006). To overcome this obstacle, Synthetic
Aperture Radar (SAR) exploits the Doppler Effect to synthesize a larger virtual antenna
through the combination of several return signals (echoes).

The signal received at the sensor has a frequency variation induced as a result of the
platform motion. This effect is known as Doppler shift, a well-known phenomenon in
physics. Since the resolution depends on the time, a particular object on the ground is
illuminated by the radar beam, making use of the Doppler shift to combine several
backscattered echoes effectively results in increasing the duration of irradiation. As
this is in effect equal to increasing the antenna aperture size of which the illumination
time is a direct function, the term Synthetic Aperture Radar (SAR) is used to describe
such an imaging system (RICHARDS, 2009).

SAR sensors are usually mounted on an airborne or space-borne platform and have a
side-looking imaging geometry. While the carrier platform moves forward, the SAR
system continuously emits and receives electromagnetic pulses. The emitted radiation
interacts with objects on the surface that will then backscatter a portion of the signal to
the sensor. How big that portion will be, depends on the physical and electrical
properties of the objects (FORNANO & PASCAzIO, 2014). At the sensor, both amplitude

and phase of the backscattered signal are received (MOREIRA ET AL., 2013).

3



While the amplitude is related to the object properties (material, roughness, dielectric
properties, etc.), the phase is a function of the sensor-target distance.

Synthetic aperture radar (SAR) remote sensing is used today in a wide range of
applications and offers a number of complementary and additional capabilities with
regard to optical remote sensing. For instance, it can be used to acquire images at
night and almost weather independent, to determine soil moisture, biomass or to
measure terrain deformations. The ranging capabilities of SAR are used in various
ways. Radar interferometry (INSAR) is one such application and allows the estimation
of ground deformation and / or topography from (at least) two SAR acquisitions making
use of the phase information contained in both images. Multi-temporal INSAR
approaches such as Persistent Scatterer Interferometry (PSI) allow the precise
estimation (with millimeter accuracy) of surface deformation for specific point targets

over long time periods.



2 Products

2.1 Land-use Map
The fast growing population and the trend to move to urban areas leads to a dynamic

change in land use. New urban areas are developed by filling agricultural land with
river sand to make the building ground more resilient to flooding (see Fig. 2).

The overall goal of this analysis is the comprehensive mapping of the 2019 land-use
in Satkhira to derive information on existing and newly established filled areas. The
resulting maps will be used in further analyses together with a geomorphological map

as a basis for the regionalization of drilling points. Freely available optical satellite data

and a supervised classification method allow for the mapping of the land-use.

Figuré 2: Filling of agricultural Iahd with river sand in Faridpur. Photo: L. Wimmer, 11/2019.

Land-use maps using the classes “Water”, “Bare Soil”, “Urban”, “Rural Settlements”
and “Agriculture” are provided for November 2019. An overview map shows the land-
use of the study area as well as the surrounding rural areas (Fig. A2). A map, focusing
on the study area presents the land-use within the city of Satkhira (Fig. A3).



The main focus of this analysis is the distribution of filled and non-filled areas from the
land-use map by reclassification of the five above-mentioned classes. A third map
presents these areas within the study area of Satkhira (Fig. A4).

To process the land-use maps, a supervised classification method based on
interactively selected training areas is used. These areas are interactively chosen from
the original satellite image and represent the spectral properties of a certain land-use
class. The supervised classification classifies the satellite image by comparing all the

image values with the selected training areas.

Data

The land use classification is based on a cloud-free image from the Copernicus
Sentinel-2 mission for the period of the Bangladesh dry season between October and
April and the transition times before and after it. To be able to receive results on the
most recent land-use and in order to map water areas comprehensively, a satellite
image from the early dry season 2019/2020 is required. Different atmospheric
conditions during the sensing times of the images can result in different image features
of the same ground objects. Therefore, atmospheric corrected images are mandatory,
to allow comparison with future land use maps based on Sentinel-2 data. An
atmospheric correction eliminates the atmospheric effects in an image and results in a
surface reflectance image that characterizes the spectral surface properties. The
atmospherically corrected image, showing the overview area cloud-free, from the 16.
November 2019 is used for further processing (see Annexure C: Data).

As input for the land use mapping, all bands with the resolution of 10m and 20m of the
image are used (Tab. 1). This selection enables the classification method to accurately
characterize the land-use classes by using all available spectral properties of the

ground objects.



Table 1: Overview of the Copernicus Sentinel-2 satellite image used for the classification. Blue color represents
the spectral band subset used in the analysis.

Sensing Date Bands Wavelengths Spatial Resolution

1 Coastal Aerosol 417nm —471nm 60m

2 Blue 399nm — 595nm 10m

3 Green 515nm — 605 nm 10m

4 Red 627nm — 703nm 10m

5 685nm — 723nm 20m

6 722nm — 758nm 20m

22.09.2019 7 Near Infrared 754nm — 810nm 20m
8 690nm — 980nm 20m

8A 832nm — 898nm 20m

9 Water Vapor 919nm — 971nm 60m

10 Cirrus 1299nm - 1449nm 60m

H Shortwave Infrared L47inm - 1757nm 2om

12 1960nm — 2444nm 20m

Methods

The workflow of the classification is visualized in Fig. 3.

Preprocessing

To prepare the image for the classification, a spatial subset and a spectral subset are
created. The spatial subset shows an overview of the study area of Satkhira as well as
the surrounding rural areas (Fig. Al). The spectral subset includes the above-
mentioned (Tab. 1) Sentinel-2 bands (Band 2, 3, 4,5, 6, 7, 8, 8A, 11, 12). Subsequent,
all image bands with 20m resolution are resampled to a 10m spatial resolution to keep

the information of the higher resolution 10m bands.

Classes and Training Areas

The purpose of the land-use classification is to derive information on urban settlement
structures. Accordingly, the two classes “Urban" and "Rural Settlements" are used for
the description of these structures. “Agriculture” and "Bare Soil" are chosen to describe

the undeveloped areas in general. Water areas are represented by the class "Water".
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Figure 3: Workflows of the Land-use classification.



These classes are based on the CORINE Landcover (CLC) program (EUROPEAN
ENVIRONMENT AGENCY, 2019). CORINE Landcover is a program of the European
Commission to standardize the most important forms of land cover for environmental
policy development. The standardized classes are based on biophysical
characteristics of the Earth’s surface (EUROPEAN ENVIRONMENT AGENCY, 2017).
“‘Water” includes all open water bodies, such as river, canals, channels, lakes and
ponds. “Bare Soil” includes all surfaces of bright bare soil, such as riverbanks,
pointbars and filled areas for urban development. “Urban” includes residential and
industrial buildings without tree cover. Furthermore, it includes streets, railway lines
and sealed surfaces. “Rural Settlements” include the city suburbs and rural villages
that have tree coverage. “Agriculture” are all areas of farmland, such as cropland (rice,
vegetables, etc.) or pasture land (for cattle, goats, etc.).

Training areas for all classes are selected from the Sentinel-2 dataset (see Tab. 2). To
receive an acceptable classification result, the training areas must be both
representative and complete for their land-use classes (LILLESAND ET AL., 2015).

All land-use classes have non-uniform spectral characteristics in common. For
example, in the “Urban” class, the spectral characteristics of tin shacks and high-rise
buildings differ. The “Agriculture” class includes spectral characteristics of different
crops and in the “Water” class, different water qualities also differ spectrally. Different
soil types in the “Bare Soil” class also have different spectral characteristics. The “Rural
Settlements” class contains areas with different tree species, which result in different
spectral characteristics.

The training areas of the land-use classes are required to represent these different
spectral characteristics. The number of training areas therefore depends on the
spectral variability within a land-use class (see Tab. 2).

The training areas are dispersed throughout the Sentinel-2 dataset to increase the

representation of all variations in the land-use classes (LILLESAND ET AL., 2015).



Table 2: Overview of the number of training areas per class.

Class Number of Training Areas
Agriculture 20
Bare Soil 5
Rural Settlements 15
Urban 10
Water 15

To show the spectral variabilities of the individual classes, the spectral profiles of the
classes are shown in Fig. 4. Each curve represents the averaged spectral signatures
of all training areas per class, based on the Sentinel-2 data set of 14.10.2019. Fig. 4

shows the spectral separability of the classes over the whole band range (see Tab. 1).

Mean Signatures of Training Areas (Sentinel-2 dataset, 16.11.2019)
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Figure 4: Mean signatures of the merged training areas.

The spectral curves of the classes “Agriculture” and “Rural Settlements” have similar
spectral signatures. The reason for these similarities is that the class “Rural
Settlements” is dominated by tree coverage and therefore represents a strong

vegetation signal.
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Both classes show vegetation-typical characteristics, such as the "red edge" (a
significant increase of reflection in the near infrared bands 5 and 6 compared to the
visible bands 2 to 4). The main differences are a higher reflectance of the class
“Agriculture” in bands 2 to 6/11 and 12 and a slightly higher reflectance of the class
“Rural Settlements” in bands 7 to 8A.

The spectral signature of “Water” shows higher reflection values around band 7 and 8
leading to the interpretation that the water class/signature contains impurities, such as
sediments. Pure water would have zero reflectance in these longer wavelengths.

The spectral curve of the class “Urban” shows a relatively continuous increase. The
spectral curve can be compared to the signature of “Bare Soil”, as both signatures
show corresponding characteristics. The main difference between both signatures is a
higher “Urban” reflectance in the shortwave-infrared compared to a lower reflectance

of “Bare Soil” in these wavelengths.

Classification

To perform the supervised classification, the Support Vector Machine (SVM) classifier
is selected, a method based on statistical learning theory. Support Vector Machines
are supervised learning models with associated learning algorithms that analyze data
used for classification.

The classifier looks at spectral boundaries between individual classes in the
multidimensional feature space. It aims to find an optimal margin (known as
‘hyperplane”) to separate the classes. The data values that constrain the width of the
margin are known as “support vectors” (JONES & VAUGHAN, 2010).

In its simplest form, a SVM separates two classes (a binary classifier). Nevertheless,
a classification with multiple classes is possible. Based on the training areas, several
binary classifiers are calculated which separate the properties of each class from those
of every other class (known as “one-versus-one” approach). The number of binary

classifiers depends on the number of classes to be separated:

_ Nclass * (nclass - 1)
nclassifier - 2

The variable ngygsirier represents the number of classifiers; the variable ngq

represents the number of classes.
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Therefore, the properties of the five classes of this investigation are separated using
10 binary classifiers (Tab. 3 shows an example of possible connections of classes), as
a result the classes are differentiated spectrally. Each classifier designates a class
name to every pixel, the most frequent class name assigns the pixel to the final class
(RICHARDS, 2013).

Table 3: The table shows all possible connections of classes (cf. RicHARDS, 2013).

Number of binary classifiers Class name 1 Class name 2

Rural Settlements
Urban
Water

Rural Settlements
Urban
Water

Rural Settlements Urban

©O| O N| O g1 | W| N|

Rural Settlements Water

Urban Water

=
o

Post-Processing

The same object feature may be classified in different classes due to spectral
variabilities. The classification result might show single isolated pixels of one class in
the area of another class (LILLESAND ET AL., 2015).

To remove the single isolated pixels in the classification image, a sieve filter is applied.
This filter replaces all pixel patches that are smaller than twelve pixels by the value of
the surrounding neighbor class. A pixel patch is a group of pixels that share their sides
or have connected angles. The final classification result is shown in Fig. A2 and A3.

Calculation of filled and non-filled areas

Based on the knowledge of the GSB colleagues and the experience gained during
fieldwork, all urbanized areas and settlement structures in Satkhira are developed on
filled areas. Therefore, those areas are considered as filled areas, the classes “Urban”

and “Rural Settlements” are reclassified to “Filled” and the classes “Water”, “Bare Soil”

and “Agriculture” are reclassified to “Non-filled” (see Fig. A4).
12



Accuracy Assessment

During the accuracy assessment, randomly distributed test samples are used to
compare the classification result with an independent high-resolution reference
dataset. As a high-resolution reference dataset, free accessible Google Earth satellite
images are used. Thus, details for a more precise interpretation of the actual land use
become visible and the classification result can be assessed visually without having
the necessity to collect ground truth information during fieldwork.

LILLESAND ET AL. (2015) recommends using at least 50 test samples per class for
accuracy assessment. Following this recommendation, 250 test samples are randomly

distributed in the image, using 50 samples for each class (Tab. 4).

Table 4: Accuracy Assessment, Sentinel-2 dataset (16.11.2019).

Reference
Sentinel-2, User's
16.11.2019 Agriculture Bare Soll Rural Urban Water Row Accuracy
Settlements Total (%)
Agriculture 41 0 8 1 0 50 82.0
S Bare Sail 12 34 0 4 0 50 68.0
% Rural
:~§ Settlements 3 2 39 6 0 50 78.0
<
© | Urban 3 9 8 26 4 50 52.0
Water 3 0 0 0 47 50 94.0
Column Total 62 45 55 37 51 250
Producer’s
Accuracy (%) 66.1 75.5 70.9 70.2 92.1
Cohen’s Kappa 0.75 0.66 0.72 0.48 0.9
per Class
Overall
Accuracy (%) 8
Overall Kappa 0.78

Since the images from Google Earth represent a compilation of different points in time,
the Sentinel-2 dataset is used as an auxiliary dataset. Both data sets were acquired at
different stages of flooding. Therefore, the visual impression of the Sentinel-2 dataset
is given priority over the data from Google Earth when assigning water areas. Based
on these datasets, land-use classes are interactively assigned to the test sample
classes. Following this, the test areas are compared with the classification results to

receive the accuracy measures (Tab. 4).
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The overall accuracy of the classification is 84.6 %. The Kappa coefficient, a measure
for the agreement between classification result and reference shows a good result of
0.78. The User's Accuracy shows how reliable the classified pixels represent actual
land use, while Producer's Accuracy shows how well an object class has been correctly
classified. In addition, the Kappa coefficients of each class are displayed in order to
individually evaluate the reliability of the classification result.

The “Water” class is the most reliably classified with a User’'s Accuracy of 94.0 %,
reflected in the high Kappa coefficient of 0.9. The “Agriculture” (82.0 %) and the “Rural
Settlements” (78.0 %) also show a high User's Accuracy, compared to the classes
“Bare Soil” and “Urban” with the lowest accuracies of 68.0 % (“Bare Soil”) and 52.0 %
(“Urban”). This is also visible in the Kappa coefficients, thus the agreement between
the classification result and the reference data is 0.75 (“Agriculture”) and 0.72 (“Rural
Settlements”) compared to 0.66 (“Bare Soil’) and 0.48 (“Urban”).

The large connected water areas outside of Satkhira (Fig. A2) are polders built as part
of the Costal Embankment Project (FENTON ET AL., 2017). Nowadays, these polders
are almost permanently inundated and are used agriculturally for shrimp farming.

The reason for lower accuracy values of the classes “Bare Soil”, “Rural Settlements”
and “Urban” (see Tab. 4) may be related to different circumstances:

For example, Tab. 4 shows that a notable number of “Bare Soil” samples were
classified as “Agriculture”, which may be related to the different vegetation stages of
the crops. Ripe grain plants, shortly before harvest, show a yellowish color. In this state
of growth, plants contain a lower level of chlorophyll, which is related to a lower spectral
reflection in the near infrared. Thus, these fields show a similar spectral signature as
“Bare Soil” and may therefore be misclassified.

The spectral signature of the class “Rural Settlements” shows similarities to the
spectral signature of the class “Agriculture” (Fig. 4). Therefore, rural settlement areas
may be classified incorrectly and lead to a lower User’s Accuracy.

The relatively low accuracy value (52.0 % User’s Accuracy) of the “Urban” class may
be related to a mixed-pixel problem in the Sentinel-2 dataset. Individual residential or
industrial buildings may be smaller than the resolution of the Sentinel-2 dataset (10m
x 10m). As a result, a pixel represents a mixture of urban buildings and other surfaces
(e.g. soil or trees). This mixture can lead to misclassification. Due to the high-resolution
reference image, it is possible to interactively determine the main content of a pixel
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(e.g. urban buildings) and to assign it to the test sample classes. The mixed pixels of

the Sentinel-2 dataset can thus lead to a lower accuracy in the "Urban" class.

The overall visual impression of the classification result (Fig. A2), as well as the overall
accuracy and the overall Kappa coefficient (Tab. 4) show a good result and

representation of the actual land-use.

2.2 River Shifting Change Detection Map
Rivers in Bangladesh are highly dynamic and underlie severe changes in location and

intensity during a few years. During a few decades, rivers may change whole
landscapes. The overall goal of this analysis is to provide information on the changes
of the river courses and the directions of shifting in the region of Satkhira. The rivers
includes the water bodies and pointbars. A regional map covers these changes from
the area of Patkelghata in the northwest to the area of Paikgachha in the southeast
(Fig. A5). River course maps are provided for six time slices (1973, 1980, 1990, 2000,
2010 and 2019) (Fig. A10-A15). The change detection map shows data of the time
slices with the highest difference in river system areas (1973, 1990 and 2019) (Fig.
Al7; A10, A12, A15).

The river course maps and the change detection map are only showing the changes
in the eastern part of the regional map (Fig. A5) where the rivers have a width that can
be mapped using the spatial resolutions of the satellite data. Rivers in the western part
and in Satkhira (e.g. Morrichap River, see Fig. A5) are often smaller in width than the
spatial resolution of the satellite images available (10m to 60m, see A6, A7, AS8).
Additionally, these rivers are also often vegetation overgrown or tree canopied.
Inundated agricultural land, immediately adjacent to rivers, also prevents a

differentiation between rivers and surrounding landscape.

Data

To carry out the analysis, cloud-free optical images from Landsat Multispectral
Scanner System MSS, Landsat Thematic Mapper TM and Copernicus Sentinel-2
missions are used. These are available during the period of the Bangladesh dry season
between October and April, and images from January and February are used in the
analysis. A comparison between images of different years is only possible when the

target features (e.g. water) can be identified in all the images by similar response
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signal. This can be ensured by using images of the same month in every year of the
analysis.

Starting 1973, one image per decade is used (1973, 1980, 1990, 2000, 2010 and
2019). To enable comparability between the final river shifting products, only bands
from the Landsat and Copernicus Sensors with similar wavelengths positions have

been chosen for processing (see Tab. 5 and Annexure C: Data).

Table 5: Overview of the satellite images and their bands used for the analysis (EUROPEAN SPACE AGENCY
2017; UNITED STATES GEOLOGICAL SURVEY n.d.).

Bands (B), Spatial Resolution/ Wavelengths
Mission Sensing Date
Green NIR
21.02.1973 B4, 60m B7, 60m
Landsat MSS 0.5-0.6 um 0.8-1.1 um
21.02.1980
14.01.1990
11.02.2000 B2, 30m B4, 30m
Landsat TM 0.52-0.6 um 0.76-0.90 um
06.02.2010
. B3, 10m B8, 20m
Sentinel-2 14.02.2019 0.538-0.583 um 0.76-0.97 um
Methods

The workflow of the analysis is visualized in Fig. 5.

Atmospheric Correction

Different atmospheric conditions during the sensing times of the images can result in
a different image feature of the physically same ground objects. Therefore, to enable
the comparison between all the images, an atmospheric correction is mandatory. An
atmospheric correction eliminates the atmospheric effects in an image and results in a

surface reflectance image that characterizes the surface properties.
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Landsat MSS; Landsat TM; Sentinel-2

GREEN, NIR

|

Atmospheric Correction
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L with charecteristic values for change detection
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Change Detection Map
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Figure 5: Workflows of the River Shifting Change Detection analysis.
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Sentinel-2 and Landsat TM images are already atmospherically corrected and surface
reflectance data are available for download (free Sentinel-2 download from Copernicus
Open Access Hub and free Landsat TM download from USGS EarthExplorer).

The Sentinel-2 atmospheric correction is based on physical principals, physical-based
algorithms use radiative transfer methods, which are simplified models of the radiation
pathway from source to sensor, to model atmospheric scattering and absorption
(LILLESAND ET AL., 2015). Auxiliary data such as water vapor data, atmospheric
pressure or a digital elevation model are added to receive more precise information for
the correction. The effects in the atmosphere are quantified by the model and used to
calculate the surface reflectance values.

The Landsat TM surface reflectance “products are generated by a specialized software
called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)’
(LEDAPS ProbucT GUIDE, 2020). Similar to the Sentinel-2 atmospheric correction,
LEDAPS is also a physical-based algorithm that fits a radiative transfer model and
includes auxiliary data to receive the atmospherically corrected surface reflectance
product.

The Landsat MSS image is corrected by using the DOS1 (Dark Objects Subtraction)
method. CHAVEZ (1996) describes that the methods “[...] basic assumption is that
within the image some pixels are in complete shadow and their radiances [if above
zero] received at the satellite are due to atmospheric scattering (path radiance). This
assumption is combined with the fact that very few targets on the Earth’s surface are
absolute black, so an assumed one-percent minimum reflectance is better than zero
percent.” (CHAVEZ, 1996). The calculated radiance-value based on this assumption is
used for the correction of the whole Landsat MSS image (image —based correction).
It is important to mention that the accuracy of an image-based correction technique is
lower than a physically based correction (e.g. as applied for Sentinel-2) (CONGEDO,
2016). Nevertheless, CONGEDO (2016) states that image-based corrections “are very
useful when no atmospheric measurements are available as they can improve the

estimation of land surface reflectance” (CONGEDO, 2016).

Calculation of Normalized Difference Water Index (NDWI)

Using the respective bands of the images (Tab. 4), the NDW!I is calculated (see Fig.
A7). The Normalized Difference Water Index (NDWI) (McCFEETERS, 1996) uses the
green and near-infrared bands to delineate open-water features.
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Water surfaces show high reflections in the green and low reflections in the near-

infrared wavelength region (see Fig. 6).
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Figure 6: Reflectance of water, soil and vegetation at different wavelengths; the wavelength areas used by the
NDWI are highlighted in green (green bands) and red (NIR bands), modified after SEOS-PROJECT.EU, 2020.

These differences are used to calculate an index that enhances the presence of open
water features and suppresses the presence of soil and vegetation (MCFEETERS,
1996). The Waterindex is calculated as follows, using the respective bands of the

satellite image:

GREEN — NIR

NDWI = o EN + NIR

The generated index map contains values in the range of -1 to +1 (see Fig. A6), while
excluding zero. Positive values are interpreted as water features. Soil and vegetation

features have negative values (MCFEETERS, 1996).

Processing steps
At first, a threshold value is applied to discriminate between values that belong to the
river system (water-bodies and pointbars) and all other values. This threshold value is

defined manually by inspecting the pixels of the different NDWI images (see Tab. 6).
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Table 6: Thresholds to discriminate between river system and other values.

NDWI image of the year Threshold
1973 -0.28
1980 0
1990 -0.03
2000 -0.03
2010 0
2019 0

The application of the thresholds results in maps that only show water-body and
pointbar areas differentiated from other areas (see Fig. A9 as an example).

Based on these threshold maps, an area is clipped interactively (due to computing
limitations of QGIS regarding data quantity) that covers mainly the river system
(including water bodies and pointbars) and adjacent areas. In the next step, all
remaining pixels of the river system in the clipped images are assigned the value “1”,
whereas the areas below the threshold (see Tab. 6) are assigned NA.

The resulting image still includes many small objects that lie outside of the main
riversystem (e.g. small ponds, agricultural canals). To eliminate these water bodies
having no connection to the main river system, the raster data are vectorized and single
isolated polygons are automatically eliminated, based on the assumption that the main
river area shows in one connected polygon.

The results of all processed years are overlain to visualize the different extents (Fig.
A8-Al13). The three results with the greatest differences in extent are selected
interactively and then processed for the change detection map: years 1973, 1990 and
2019 (Fig. A15).

Change Detection Map

The goal of the change detection map is to provide information on the changes of the
Padma river system course and the direction of shifting. The changes are visualized in
a single map. The conversion of the vector map (polygons) back to a raster map

enables to present different river areas with characteristic values in a single map.
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A unique year-dependent characteristic value is assigned to the cells of each new
raster image (see Tab. 7). The raster cell size is set to 20 m, as this is the pixel size,
needed by the successive project analyses.

The yearly products are joined to receive the change detection map of the area of the

Padma river system for the different years (see Tab. 8).

Table 7: Overview of the characteristic values per year.

1973 1990 2019

Characteristic

1 10 100
value

Table 8: Legend of the raster values in the change detection map.

Raster value Area of the Padma river system in

1 1973

10 1990

11 1973, 1990

100 2019

101 1973, 2019

110 1990, 2019

111 1973, 1990, 2019

Results and Discussion

The resulting maps are added in Annexure A (A5-A15) and described in this section.
For better orientation, topographical information and some in Bangladesh well-known
cities are included in the final map visualization of the remote sensing based products.

Extent of river system and its water body

As already mentioned, the NDW!I values greater than the threshold lead to the
classification of a larger area than just the water bodies as it includes water bodies and
pointbars. All together is interpreted as full extent (maximum water coverage) of the
Padma river system based on discussions with the GSB colleagues. As an example,
Figure A16 shows the NDWI result for 2019 with a threshold greater than 0 overlain on
the Sentinel-2 RGB 432 image from 2019. It is visible that the NDWI result represents

the water body areas of the Sentinel-2 image.
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Figure A10 to A15 show in blue the extents of the Padma river system (based on
NDWI) in the years of 1973, 1980, 1990, 2000, 2010 and 2019.

The different levels of details between the final maps are caused by the different spatial
resolutions of the images. Due to the higher spatial resolution, Sentinel-2 shows more
details than Landsat TM and Landsat MSS (Tab. 5).

It can be summarized, that the general shape of river system for the different years is

visible in all decades.

Change Detection Map

Based on the NDWI evaluations, the change detection map is calculated (Fig. A17).
This map includes information on the shifting direction of the river system, together
with the locations of land-loss and possible land-gain. Furthermore, it shows which
regions were part of the river system for the period between 1973 and 2019 (Fig. A15,
dark blue).

In several regions of the river areas, changes in time are observable (Fig. A17): In
Section A, an anthropogenic conversion of a river segment is visible. Turquoise color
indicates the location of the river system in 1973, orange color indicates the location in
1990; light green shows the location in both years (1973 and 1990). In the time-
slices/years of 1973 and 1990, it is visible that both the eastern and the western part
of the Harihar river have been part of the river system. In contrast, the time slice of
2019 indicates that only the western part of the river is still part of the whole river
system. The Sentinel-2 image of 2019 (see Fig. A5) shows that the area of the river
was mostly converted to agricultural land, crossed by a small channel at the place of
the former river.

Section B shows a meander cut-off. The red color indicates the location of the river
system in the year of 2019. In the years of 1973 to 1990 (also see Figs. A10-A12) the
river course shows an eastward meandering bow in turquoise (1973), orange (1990)
and light green (1973, 1990). The meander bow was cut off after 1990 and in 2019 the
river course is visible in red color west of the meander bow. Comparing the position of
the former meander bow to the Sentinel-2 image of 2019 (see Fig. A5), it can be shown
that the former river area is used agriculturally. The agricultural overprinting of this area
is so strong that the structure of the former meander bow is no longer recognizable in

the landscape.
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In section C, a developing river course is visible. Dark blue color indicates the river
location in the years 1973, 1990 and 2019. Orange color shows the river location in
1990 and 2019; red color indicates the year 2019. The center of section C shows the
river channel in dark blue. The adjacent orange and red areas to the north describe a
northward river course development between 1973 and 2019. This development also
indicates a continuous river erosion into this direction.

Section D shows another anthropogenic overprint of the river system. Dark blue color
indicates the river location in 1973, 1990 and 2019. Light green color shows the river
location in 1973 and 1990, while orange color indicates the river location in 1990.
Directly in the center of the section a former riverbed is visible. Light green and orange
colors indicate that this riverbed is not a part of the river system in 2019. A comparison
with the Sentinel-2 image of 2019 (see Fig. A5) shows that the area of the former
riverbed is nowadays used for agriculture. In contrast to the overprinting in Section B,
the structure of the former riverbed is still recognizable in the landscape. Nevertheless,
in comparison to the conversion in Section A the former riverbed is completely cut off

from the present river system.

In conclusion, the Change Detection Map in Figure A17 shows significant changes of
the river system between the years 1973 and 2019. Of particular note are the
anthropogenic overprints of former parts of the river system by agricultural land-use.
The cut-off meander bow in section B is no longer recognizable in single satellite
images of today’s landscape (Fig. A5) and could only be identified by comparing
satellite images of different years (Fig. A17). In this context , the change detection map
should be considered as a planning basis when identifying and developing urban areas

as it provides an insight into the formation of today’s land use areas.

2.3 Inundation Map
Due to climate change, Bangladesh is experiencing an increase in rural-urban

migration movements. Therefore, the demand for safe building ground is very high.
One result is an increasing lateral growth of urban areas. However, urban growth is
limited to suitable building ground and eligible areas are often low-lying and therefore
prone to flooding during the yearly monsoon season between May and October.

Planning agencies may benefit from geodata on inundation-prone areas that are
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reliable, available frequently and sustainable, easy to process and easily
understandable.

The overall objective of this analysis is to receive a map that gives an overall
impression on the frequency of inundation in areas that are at risk of flooding (Fig. A17)
for the years 2015 to 2020. The analysis is carried out using 20 Sentinel-1 radar images
from 2015 to 2020 and a threshold approach to differentiate between inundated and
non-inundated areas. To ensure an easy processing of the large amount of multi-
temporal radar data, the analysis is carried out using the online processing tool Google
Earth Engine (see the programming code in Annex B).

The Bangladesh Water Development Board (BWDB) already established inundation
mapping using Sentinel-1 datasets. In their annual flood reports, the BWDB is using
an inundation map to verify the output of a flood-forecasting model (BANGLADESH

WATER DEVELOPMENT BOARD 2018, pp. 92-93).

Data

The analysis is based on Copernicus Sentinel-1 images starting 2015, with operation
of the Sentinel-1 sensor.

Google Earth Engine states to preprocess the images using the Sentinel-1 Toolbox to
receive radiometrically calibrated images, terrain corrected and thermal noise removed
(GOOGLE EARTH ENGINE DATA CATALOG, 2020).

A data selection from the rainy season in Bangladesh is required to map the maximum
inundation. The selected images are acquired in “IW” (interferometric wide swath), the
default acquisition mode of Sentinel-1 (EUROPEAN SPACE AGENCY, 2020). To
differentiate between water and non-water pixels, the VH polarization is selected.
Preliminary works in the study areas have shown that VH is the most suitable
polarization for the detection of water. The respective spatial resolution of the VH
polarization images is 10 meter.

The Bangladesh rainy season is roughly between May and October of each year. The
time of maximum inundation for the study area of Satkhira is set to the months of June
and July of each year. This assumption is based on the experience and knowledge of
colleagues at the Bangladesh Geological Survey (GSB), the flood reporting by the
BWDB (see e.g. BANGLADESH WATER DEVELOPMENT BOARD, 2017, 2018, 2019) and by

interactively assessing and selecting the images from a period that show the largest
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inundated areas. Since the exact dates of maximum inundation of a year are unknown,
all available images of June and July of each year are processed in this analysis.

Finally, using the above-mentioned benchmarks, 20 Sentinel-1 images of descending
orbits are selected for the processing (Annex B, lines 8-23). Annex C: Data lists the

images in a table.

Method

The workflow of the processing in Google Earth Engine is visualized in Fig. 7. The
selected images of each year are combined and mean values are calculated. The
mean-value images are subsetted to fit the extent of the study area (see Fig. A19;
Annex B, lines 24-29).

Thresholding

Water surfaces appear in black and dark gray colors in the averaged amplitude images
(see Fig. A19). In order to identify a threshold value, the values of assumed water and
non-water image areas are identified interactively. Based on experience in the
definition of thresholds discriminating between water and non-water surfaces, the
identified threshold values in Bangladesh range from -20 dB to -22 dB. For the Satkhira
study area, a threshold value including values smaller than -20 dB is chosen and
applied to images from all years (Annex B, lines 109-118). The output image only
shows pixels smaller than the threshold, representing the inundated areas of each year
(see Fig. A20).

All areas that have been inundated between 2015 and 2020, are compiled by
combining the threshold images of all years into one image (see Fig. A17; Annex B,
lines 120-123). The result is exported with a 20m spatial resolution, which is a

requirement for further analyses in the project (Annex B, lines 129-141).
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Figure 7: Workflow of the Google Earth Engine processing of the inundation mapping method.
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Results and Discussion

The resulting map presents the areas and frequencies of inundation between 2015 and
2020 (see Fig. A18).

The map exhibits three major areas: (1) A larger north-south complex in the center of
the study area, which shows the city of Satkhira (stretching from the landmark of Taltala
in the north to the landmark of Miasaheberdanga in the south) with rarely inundated
areas in the years from 2015-2020. (2) West of the city of Satkhira a large connected
and frequently inundated area. The southern part is inundated every year of the six-
year period, while the northern part includes areas that are less frequently inundated.
(3) A north to south orientated area east of the city of Satkhira showing areas that were
five to six times inundated during the study period. In this eastern part, it is visible that
the number of areas frequently inundated decreases with shorter distance to the city.
Many small areas in the Satkhira city area are inundated yearly, representing ponts
and lakes as they partially overlap with the water bodies in the topographic base map
(data of the Survey of Bangladesh and OpenStreetMap). Nevertheless, the majority of
frequently inundated areas is located in the outskirts of Satkhira.

The area south-west of the town of Satkhira (around the landmark of Agunpur) is part
of a polder built as part of the Costal Embankment Project (FENTON ET AL., 2017).
Nowadays, these polders are almost permanently inundated and are used for shrimp
farming. Therefore, the large connected frequently inundated areas are mainly caused

by inundated polders.

It can be concluded that between 2015 and 2020 for the months June and July (rainy
season) mainly areas in the rural outskirts of Satkhira were inundated. The frequent
inundation occurs in the polder areas in the west used agriculturally and in the areas
east of the study area. The urban area of Satkhira city experiences a non-annual

inundation.

2.4 Ground Motion Map

2.4.1 Introduction

Within the project Geo-Information for Urban Planning and Adaptation to Climate
Change (GPAC), a project of German-Bangladeshi technical cooperation and carried
out by the Geological Survey of Bangladesh (GSB) and the German Federal Institute

for Geosciences and Natural Resources (BGR), ground motion products based on
27



Radar Interferometry (INSAR) were created for several study sites in Bangladesh. The
goal of these analyses is to establish a workflow for the systematic integration of
ground motion data into a climate change adapted urban planning in Bangladesh. The
availability of free, medium resolution, radar satellite images through the European
Copernicus program and the progress in computing capabilities, open up new
opportunities for the wide-scale, multi-temporal and continuous ground motion analysis
based on satellite data.

In the context of an advancing urbanisation and the resulting increased demand in
suitable building space, in combination with the particular exposure of Bangladesh to
climate change related risks, INSAR ground motion products enable the identification
and monitoring of potentially stable areas and can be used in the prediction of
inundation scenarios. In combination with other relevant geodata, INSAR can hence
contribute to the assessment of building ground suitability.

In this section, the results of the INSAR analysis for the city of Satkhira from January
2017 to December 2019 are presented and discussed.

2.4.1.1 SAR Interferometry (INSAR)

SAR interferometry (INSAR) is a technique for the precise measurement of topography
and terrain movement in the range of several millimetres from two or more SAR
images. The different methods used in this field have in common that they exploit the
phase information contained in the images acquired from two or more different sensor
positions (spatial baselines) and/or at different acquisition times (temporal baselines).
Concretely, the phase difference between the different acquisitions (the so-called
interferometric phase) implicitly contains information about the topography of the area
of interest and — when data from different points in time is available — on any terrain
movements during the observation period.

When terrain deformations are to be observed over a longer period, the issue of
increasing loss of coherence - or decorrelation - between the different scenes arises.
Coherence is estimated from the amplitude of the complex correlation coefficient of
two SAR images. In the context of SAR interferometry, coherence is used as a
measure to evaluate the quality of the phase difference and can take on any value
between 0 and 1, where high coherence indicates high quality of the phase difference
while low coherence indicates a highly noisy phase difference (LOPEZ-MARTINEZ ET AL.,
2004).
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Decorrelation particularly affects areas with vegetation (forests, parks, farmland ...)
where the backscatter to the radar sensor is subject to high temporal variations due to
quick changes in geometry (e.g. leaves moving with the wind) and dielectric properties
(moisture variations). It also affects areas with a low backscatter to the sensor such as
smooth surfaces (water, roads, airstrips ...) or areas of radar shadow. In these areas,
noise dominates the return signal (low signal-to-noise ratio). In essence, decorrelation
occurs when the contributions of topography and deformation to the total phase
difference are superimposed by random phase contributions and noise, and can no
longer be isolated. As a rule of thumb, the longer the time gap between two acquisitions
and the larger the spatial distance between the sensor positions (temporal and spatial
baseline), the higher the degree of decorrelation (WoobHOUSE, 2006).

Therefore, if the goal is to examine deformation time series, one has to limit the
analysis to image pixels that are less affected by decorrelation. That is, pixels that
exhibit a strong and stable backscatter to the radar sensor even over long periods of
time. These sort of targets are usually abundant in urban areas and correspond to
man-made structures. In addition, natural targets such as rocks, gravel fields and even
desert surfaces can be sufficiently stable over time to be considered for multi-temporal
analyses. There are different approaches in this field of multi-temporal radar
interferometry. Two approaches, Persistent Scatterer Interferometry (PSI, see
FERRETTI ET AL. 2001) and Small Baseline Subset (SBAS, see BERARDINO ET AL., 2002)

are used in the frame of this work and are described briefly in the following section.

2.4.1.2 Multi-temporal INSAR (PSI and SBAS)

Persistent Scatterer Interferometry (PSI) is a technique that relies on point targets,

which have a strong backscatter and are stable over time (so-called persistent
scatterers, PS). Within an image pixel, a PS has to be dominant while the backscatter
contributions of the other objects (scatterers) within that resolution cell can be
neglected. These conditions are normally fulfilled by artificial (i.e. man-made) objects
which are particularly prevalent in urban areas. Examples include cell phone towers,
roofs and edges of houses, bridges, metallic structures, utility poles, etc. These objects
are referred to, in the context of radar interferometry, as persistent scatterers and can
be identified within the image stack using different methods. Frequently, the amplitude

stability over the observation period is considered for this purpose.
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PSI is particularly effective in urban areas with a high density of point targets. In rural
areas on the other hand, the number of potential PS is considerably less.

The PSI algorithm initially selects a master image from the stack of available radar
acquisitions based on a minimisation of the average spatial and temporal baseline with
respect to the other images in the stack. Secondly, one interferogram is created
between the master image and each of the secondary images. All images in the stack
of acquisitions are then zero baseline steered, i.e. the measured interferometric
phases are adjusted for the different imaging geometries of the different acquisitions
with respect to the master image, using an external DEM like e.g. SRTM and precise
orbit information. The next step is the identification of PS candidates. Here, the
classical approach is to use the amplitude stability over time. Subsequently, and using
an iterative approach, the atmospheric and topographic phase contributions are
calculated and removed and the deformation velocity for the PS is calculated. To do
so, a deformation model is applied. In the most common case, a linear deformation
model is used (see FERRETTI ET AL. 2001).

Small Baseline Subset (SBAS) is another method for multi-temporal radar
interferometry that uses a network of interferograms. Instead of choosing a single
reference image for all interferograms, groups (subsets) of images are considered that
have been acquired with a small temporal and spatial baseline. Subsequently, for each
image combination within a subset, an interferogram is calculated respectively (as long
as a user-defined maximum temporal and spatial baseline is not violated). For this
reason, in SBAS the number of interferograms is usually much higher than the number
of available SAR acquisitions. In order to achieve a continuous motion time series, the
individual subsets are subsequently linked together (see BERARDINO ET AL., 2002).
Since SBAS tries to minimise the temporal and spatial baseline between the images
of a particular subset, the resulting interferograms are less affected by decorrelation
when compared to PSI. This leads to the detection of more stable points (scatterers)
including natural objects such as rocks, gravel fields or desert surfaces. SBAS is also
able to deal with disconnected subsets (although this should be avoided) and can

interpolate over points that are affected by a temporal loss of coherence.
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2.4.1.3 Multi-temporal INnSAR limitations

The deformation measured in radar interferometry is always along the line-of-sight of

the imaging sensor/satellite and not the true vertical deformation. SAR sensors are not

nadir looking but instead are looking at the ground obliquely with an incidence angle.

For Sentinel-1 this angle is between 20 and 45 degrees with respect to nadir. However,

the vertical deformation component can be estimated with a certain probability using
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adjustment calculation if acquisitions from both satellite orbit directions (ascending and
descending) are available. In this case, two images acquired in different orbits with
different look angles are used to estimate the vertical motion component and one
horizontal motion component (usually the east-west component is estimated since the
north-south component is not well constrained by most satellite imaging geometries).
Furthermore, in radar interferometry all the estimated velocities and displacements are
relative to one or several reference points. The principal reference point is assumed to
be stable over the whole observation period, an assumption that is not always true. In
order to get the absolute motion, GNSS or other survey data is required, to which the
dataset can be referenced instead. For our analyses within the GPAC project, no
external reference data is used, as no adequate GNSS are available.

Another aspect that needs to be considered is the ability to exactly assign a particular
deformation measurement to an object on the ground. For the German Ground Motion
Service (BBD) a mean geolocation accuracy of 3.5 metres for strong point targets was
shown (KALIA ET AL., 2020). In the case of SBAS, assigning a particular object to an
observation proves more challenging since SBAS applies spatial averaging of adjacent
pixels, merging together signals from numerous individual scatterers.

The ambiguous nature of the phase information contained in SAR images (only
displacements corresponding to fractions of a wavelength can be measured) means
that INSAR is limited in its ability to measure fast displacements. In fact, the maximum
theoretical displacement that can be measured between two scenes corresponds to
one fourth of the wavelength. CROSETTO ET AL. (2016) described the maximum
differential accumulated deformation rate measurable with Sentinel-1 with 42.6
cm/year. A final limitation that needs to be mentioned is the availability of coherent
targets. While SBAS is able to detect a high density of targets even in rural areas,
neither technique (PSI or SBAS) can provide information in areas where there are
strong changes in ground cover over time (for example seasonally flooded fields).
The BGRs Remote Sensing Working Group is mainly using ENVI SARscape software
for INSAR processing. This software is developed by the Swiss company sarmap S.A.
and is fully integrated into ENVI. For PSI, SARscape currently only supports linear
deformation models while the SBAS implementation in SARscape also supports non-

linear models.
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2.4.2 Methods
2.4.2.1 Project area

Satkhira (see Figure 10) is a city in the south-west of Bangladesh and capital city of
the Satkhira Division. The city is located only around 100 km from the coast in a low-
lying area dominated by agriculture and shrimp farming that sees frequent seasonal
inundations (see Chapter 2.3 Inundation Map) .Satkhira had a population of around
113,000 people in the 2011 government census. Satkhira has a flat topography without
any pronounced features and an average elevation of roughly 5 to 10 meters above
sea level. The city is surrounded by large agricultural areas and by large-scale polder
areas in the south used for shrimp farming.

As other cities in Bangladesh, Satkhira has seen its population grow over the past
decades. In particular the city centre has seen, over the past 20 years, a densification
and the construction of several new buildings, including high-rise buildings.
Nonetheless, the city remains relatively small in size when compared to other large
cities in Bangladesh and is still dominated by low-rise buildings and a high share of
vegetation. Compared to other cities in Bangladesh, Satkhira also does not have any
large, sprawling suburbs but is instead mostly surrounded by agricultural areas. In the
south-west of Satkhira the Satkhira Medical College is currently under construction.
The college campus comprises an area of over 20 hectares and includes a hospital
and several dormitories.

While the Satkhira project area has a size of 63 km?, for the INSAR analyses a larger
area of 162 kmz is chosen. This area covers the city of Satkhira and its immediate
suburbs. Even though the deformation dynamics within the city of Satkhira are the main
focus of this work, a larger area was consciously chosen for the INSAR processing, to
enable a higher selection of potential reference points in the phase unwrapping part of

the processing.
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Figure 10: Satkhira study area.

2.4.2.2 Data and data download

The radar interferometry analyses carried out within the scope of the GPAC project are
based on Sentinel-1 data. Sentinel-1 is a C-band radar satellite constellation operated
by the European Space Agency (ESA) consisting of two identical satellites — Sentinel-
la and Sentinel-1b. The data is distributed free of charge by ESA. In addition, for the
Satkhira project area, TerraSAR-X/TanDEM-X data is used. These are two high
resolution X-band satellites that are flying in a close formation and are operated by the
German Aerospace Centre (DLR) and Airbus (see AIRBUS DEFENCE AND SPACE, 2015).
For the Satkhira project area, Sentinel-1 data covering the period from January 2017
to December 2019 in the ascending and the descending orbit direction are used. Only
data starting from 2017 are used since no earlier data is available in the ascending
orbit and both orbit directions are needed to calculate the vertical displacement rates.
In total, 167 Sentinel-1 scenes are used for the INSAR analyses (see Annexure C:
Data).

Sentinel-1 data are freely available for download from the Copernicus Open Access
Hub (https://scihub.copernicus.eu/) and from the Alaska Satellite Facility (ASF)

(https://asf.alaska.edu/).
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For this project, all Sentinel-1 data are downloaded through the ASF. For more details
on the download process, please refer to the Interferometric Stacking in SARscape
Processing Guidelines.

Additionally, TerraSAR-X and TanDEM-X X-band data covering the period November
2017 to November 2019 and both orbit directions is used. A total of 122 TerraSAR-
X/TanDEM-X scenes or roughly 3 scenes per month and orbit direction are used (see

Annexure C: Data).

2.4.2.3 Orbit files download

In addition to the image files, it is necessary to download the so-called precise orbit
ephemerides files. These are highly precise satellite position vectors, which are
available online 20 days after the Sentinel-1 acquisitions are published. These vectors
are necessary for INSAR processing, since the exact sensor position at the time of
acquisition is needed for high quality INSAR results. The orbit files can be downloaded
from the Sentinel-1 Quality Control website (https://gc.sentinell.eo.esa.int/).

For an INSAR analysis only those Sentinel-1 scenes should be considered, which are
older than 20 days at the time of the analysis. The accuracy of the satellite positions
after the update using precise orbit information is given by ESA with 5 cm (3D RMS).
For more information on the orbit file download, please refer to the Interferometric
Stacking in SARscape Processing Guidelines.

The TerraSAR-X data was already delivered with updated precise orbit information.

2.4.2.4 SARscape PSI and SBAS workflow
ENVI SARscape is used in this project for INSAR processing. The PSI workflow within
the software consists of five steps: Connection graph, Interferometric process,
Inversion: First Step, Inversion: Second Step and Geocoding. Once both orbit
directions are processed until the Geocoding step, the tool Shape Combination is used
to combine both datasets and estimate the vertical deformation component.
SBAS processing was also done using ENVI SARscape. The SBAS workflow consists
of seven iterative steps: Connection Graph, Interferometric Process, Ground Control
Point Selection, Refinement and Re-Flattening, Inversion: First Step, Inversion:
Second Step and Geocoding. As with PSI, both orbit directions were processed
separately and then merged using the Meta Combination tool. In following, the
processing steps are briefly explained.
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The first step in the PSI and SBAS processing chain is the Connection Graph tool.
For PSI, this function analyses the stack of SAR images and selects the best master
image from the stack (based on temporal and spatial baseline). All differential
interferograms are subsequently formed with this master image. For SBAS the tool
creates a network of image connections based on a user defined maximal temporal
and spatial baseline (see Figure 11). For every image connection, an interferogram is
formed in the following step. Not all images in the network need to be directly
connected to each other. Ideally, however, all images are connected at least indirectly.
The Connection Graph tool also creates a working directory in which the outputs of all
the processing chain’s steps are stored and creates the auxiliary.sml file in the working
directory. This file is needed as an input to all the following steps and it contains

information about the data used and the progress of the processing chain.
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Figure 11: Right: PSI connection graph with one master image and only one connection between master and
each child; Left: SBAS connection graph showing multiple connections for each image and two disconnected
blocks.

In the Interferometric Process, the interferograms between all image pairs are
generated. To do so, all images are first co-registrated, i.e. they are aligned in such a
way that each pixel in the child image represents the corresponding object in the
master image. This is achieved by locally matching the image intensity values using a
maximisation of local cross-correlation between master and child image.

After co-registration, each master image is multiplied by the complex conjugate of the
child image. The phase of the resulting complex interferogram corresponds to the
phase difference between master and child image. This phase difference is retained,
the so-called interferometric phase. This phase has multiple contributions of which the
most important ones are the different atmospheric attenuation between the two

acquisitions, the topography, the so-called flat earth contribution and the deformation
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that occurred between the two acquisitions. Since we are only interested in the latter
contribution, the others need to be cancelled out as best as possible.

The flat earth phase is the phase contribution which comes from the variation of range
distance across the image due to the curvature of the earth. This contribution can be
removed by using an ellipsoid in a process called interferogram flattening. The
topographic phase contribution can be initially estimated using a digital elevation model
(DEM) such as SRTM and the satellite orbit information. This estimate is further refined
in the following steps of the workflow. Similarly, the atmospheric contribution is
estimated in the following steps of the workflow.

For PSI, the Interferometric Process includes the steps coregistration, interferogram
generation and interferogram flattening (which includes removal of flat earth
component and topographic phase component). Contrary to “standard” InSAR
processing, no spatial filtering is applied and point targets (individual objects with a
strong backscatter to the sensor) are preserved.

For SBAS, the Interferometric process also includes coregistration, interferogram
generation and interferogram flattening but also includes filtering of the flattened
interferogram to reduce phase noise and an initial phase unwrapping (transformation
of the interferometric phase from multiples of 21 to absolute values using appropriate
reference points).

The next step in the SBAS workflow, Refinement and Re-Flattening, uses user
defined reference points to correct for possible orbit inaccuracies and large-scale
atmospheric influences.

In the Inversion: First Step an initial estimate of the model parameters (residual height
and displacement information) is undertaken. In the case of PSI, the algorithm
identifies a number of coherent targets (Persistent Scatterers, PS) and analyses the
phase history of these targets only. Initially, only highly coherent targets are considered
and their information is used to get a first estimate of the model parameters. In the
case of SBAS, the input scenes are processed in whole, the residual height and
displacement related information are estimated from the interferometric phases and
the phase unwrapping is re-done to generate higher quality products.

In the Inversion: Second Step the atmospheric phase components are estimated.
This step is identical for both PSI and SBAS. The atmospheric phase contributions are
estimated, removed from the interferometric phase and the date-by-date
displacements are estimated for all images in the stack.
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Finally, in the Geocoding step, the calculated displacement information is geocoded
from SAR slant range geometry into a geographic coordinate system.

All steps are explained in detail in the document Interferometric Stacking in SARscape
Processing Guidelines. The processing parameters are detailed in Annexure D:

SARscape processing parameters.

2.4.3 Results

2.4.3.1 PSI processing

Using the SARscape PSI workflow, both datasets (Sentinel-1 and TerraSAR-
X/TanDEM-X) were processed in both orbit directions (ascending and descending)
respectively. The results for each dataset were combined (decomposed) to obtain the
vertical and east-west motion component. Finally, the results were filtered such that
only persistent scatterers with a temporal coherence value >= 0.7 were retained.

The decomposed Sentinel-1 PSI dataset contains more than 9,400 points (persistent
scatterers) and covers the time period from January 2017 to December 2019. Figure
12 shows the average vertical ground motion velocity for the Satkhira project area
obtained by the PSI multi-temporal INSAR approach using the Sentinel-1 dataset. The
original dataset, where each measurement location is represented by a point
geometry, is converted into raster format for visualisation purposes for this report. A
single pixel value in Figure 12 is the mean displacement velocity value of all points
within that raster cell. Green and beige colors correspond to points, which are stable,
blue tones to points that have experienced an uplift during the observation period, and
red points correspond to areas of subsidence. The figure shows the highest point
density around Boro Bazar commercial area and in the city’s more densely built up
areas. As expected, almost no points are found within the large agricultural areas that
surround the city, as these areas are mostly free of stable targets.

Figure 12 shows relatively little movement in most of the project area. Most of the city
and its surrounding areas are moving only slightly or are stable within the margin of
error (+/-2 mm/year). Only a few isolated points of strong subsidence can be found
within the city centre. The only larger cluster of strong subsidence is found outside the
city centre on the newly built campus of the Satkhira Medical College.

The decomposed TerraSAR-X PSI dataset, covering the period from November 2017

to November 2019, contains more than 74,000 persistent scatterers (Figure 13).
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The point density is high in almost all the urbanised areas and higher than in the
Sentinel-1 PSI dataset (for an explanation see section 2.4.4). Using TerraSAR-X data,
more points are detected in the suburban areas of Satkhira and the rural settlements
surrounding the city. However, as with Sentinel-1, the agricultural areas surrounding
the city are largely not captured due to a lack of suitable targets.

Figure 13 shows a similar picture to Figure 12. Most of the city centre of Satkhira is
moving only slightly (less than +/- 5 mm/year) or is stable within a margin of error of +/-
2 mml/year. As with the Sentinel-1 dataset, a few points of strong subsidence (> -5
mm/year) are found within the city, but no large clusters. Data on the Satkhira Medical
College campus is available in the TerraSAR-X descending dataset but not in the
ascending dataset, where there are no scatterers available that meet the coherence
threshold of 0.7. Since data from both orbit directions is needed for the decomposition
of the line-of-sight measurements into vertical measurements, no information on this
area is available in the decomposed dataset.

Furthermore, on the TerraSAR-X data several areas of uplift are detected that are not
visible on the Sentinel-1 data. In particular, one area in the northeast is noticeable,
stretching over 3 km from the District Jail to the Satkhira Technical Training Center.
This area is experiencing an uplift of +5 to +10 mm/year over the observation period.
In the Sentinel-1 based PSI data, this area only contains a few measurement points.
The few points that are available in the Sentinel-1 PSI dataset also indicate a positive

deformation trend but with a magnitude of only +2 to +5 mm/year.
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Figure 12: Sentinel-1 PSI vertical ground motion velocity, Satkhira project area.
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Figure 13: TerraSAR-X PSI vertical ground motion velocity, Satkhira project area.
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2.4.3.2 SBAS

SBAS results are obtained using the SBAS workflow within the SARscape software.
As with PSI, both orbit directions are processed separately and then merged to obtain
the vertical motion component.

Figure 14 shows the average SBAS vertical ground motion velocity in Satkhira for the
period January 2017 to December 2019 obtained using Sentinel-1 data. The dataset
is notably denser than the Sentinel-1 PSI dataset and is also covering a much larger
area (comparable to the TerraSAR-X PSI spatial coverage). Within the city centre, and
where data from both datasets are available, the results seem to match well within the
Sentinel-1 and TerraSAR-X PSI results. Large parts of the city and its surrounding
areas fall within the error margin and can be considered stable during the observation
period. The data show only punctual strong subsidence within the city centre, affecting
for example the stadium and several newly built high rises along the city’s main street.
Outside of the city centre however, several clusters of strong subsidence are visible in