Stephan Costabel¹ and Mike Müller-Petke²

¹Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin (stephan.costabel@bgr.de) ²Leibniz-Institut für Angewandte Geophysik, Hannover (mike.mueller-petke@liag-hannover.de)

NMR-Relaxation bei Teilsättigung unter Berücksichtigung von fast- und slow diffusion

x 10

(a)

10

10

10

r_{pore} (µm)

10

r_{pore}) [a.u.] o

Motivation

Verständnis vom Zusammenhang Sättigung (S) und NMR-Relaxation (T₁) (=> Abschätzung der hydraulischen Leitfähigkeit bei Teilsättigung)

Übliche Vorstellung sehr vereinfacht (Abb.1): Entsättigung gemäß Kapillarbündelmodell, NMR nur im fast diffusion regime

Modellvorstellungen zum Relaxationsverhalten

>Nur im fast diffusion regime gilt Proportionalität :

Im slow diffusion regime ist multi-exponentielles Verhalten aus einer einzelnen Pore möglich! D.h. keine eindeutige Zuordnung von $T_{1,surf}$ und r_{pore}

Relaxation in vollgesättigten Kapillaren (Abb.2, Modell 1): Brownstein und Tarr (1979)

Berücksichtigung residualer Wasserfilme (Abb.2, Modell 2): Costabel (2011)

Modell 2 Abb. 2: evtl. verbleibende Wasserfilme beeinflussen das NMR-Relaxationsverhalten

Material und Methoden

Proben mit enger Porenradienverteilung (Abb.3a): industrieller Feinsand (fs) und natürlicher Mittelsand aus dem Fuhrberger Feld (FBS)

>Entsättigung über Vakuumpumpe mit regelbarem Druck

Abb.3: (a) Wasserretentionskurven der untersuchten Proben, (b) verwendetes NMR-Messgerät: NMR Mouse (Blümich et al., 2008).

Vorwärtsmodellierung der Relaxation in einer einzigen Pore mit effektivem Radius r_{eff} (Modell 1 und 2):

S

Parametersuche f
ür r_{eff} und
ρ (Abb.5):

Modell 1 erklärt die Messdaten genauso gut wie Standardauswertung (Siehe Abb.4)

Modell 2 erklärt die Daten hier nicht: Einfluss der Wasserfilme wird für diese Beispiele nicht nachgewiesen

Probe fs im fast diffusion regime:

S	h [cm]	r _{eff} [μm]
1	0	30
0.55	100	19
0.15	200	6

10

 $S_1 < 1$

10¹

T, [s]

 10^{2}

 $S_2 < S_1$

10

Modell 1

Abb. 1: (a) Idealvorstellung: Porenradienverteilungen (Kapillarbündel) bei Entsättigung, (b) entsprechende Verteilung der NMR-Relaxationszeiten (Inversion mit Glattheitskriterium)

10

10

