Geothermal Energy & Lithium Production> The "UnLimited Project"

EnBW Energie Baden-Württemberg AG Research & Development MEng. E. Kaymakci Dr. T. Kölbel EnBW T-FG 2022, June 23rd

Gefördert durch:

Utilisation of geothermal power & heat

Shallow and deep geothermal systems

Lithium from geothermal brines

European resources and Upper Rhine Graben

Bruchsal geothermal plant

In operation since 2009

Plant design

Operated by Bruchsal Municipality and EnBW R & D

Geothermal brine cycle

Production rate: 28 l/s

Inlet temperature: 126 °C

Outlet temperature: 60 °C

Operational pressure: 22 bar

Power production

Working media: ammonia/water

Capacity: 550 kW

Cooling: wet cooling tower

Heat exchanger: 2x plate exchanger

Heat supply

Flow rate: 6,25 l/s

Inlet temperature: 95 °C

Thermal capacity: 1.200 kW

Seismic Monitoring

No seismicity since start of operation

- In operation since 2010
- Up to four seismic stations in boreholes, in addition five surface stations Oberflächenstationen
- Measurements still active

Geology and local reservoir rocks Origin of Li in geothermal brine is still unknown

Geothermal brine at Bruchsal

4x more saline than ocean water

Lithium demand and recent production

Increasing demand mainly caused by e-mobility

Top 5 companies in Lithium production worldwide

- Albemarle (USA)
- Mineral Resources Limited (Australia)
- Jiangxi Ganfeng Lithium (China, Australia, Argentina, Mexico)
- Tianqi Lithium (China, Chile, Australia)
- Sociedad Química y Minera –SQM- (Chile)

Source: NS Energy, 2021

Lithium deposits worldwide

No relevant resources in Europe

Source: Adapted from Jade Cove Partners

Lithium production (realised & planned)

- . Silver Peak, USA
- 2. Salton Sea, USA,
- 3. Mina da Cachoeria. Brazil
- 4. Mibra, Brazil
- 5. Salar de Uyuni, Bolivia
- 6. Salar de Atacama, Chile
- 7. Salar de Olaroz, Argentina
- 8. Salar de Hombre Muerto, Argentina
- 9. Alijó, Portugal
- 10. United Downs, United Kingdom
- 11. Rittershofen, Rion, Puy-de-Dome, France
- 12. Upper Rhine Valley, Germany
- 13. Denizli, Turkey
- 14. Olkaria Geothermal Field
- 15. Bikita, Zimbabwe
- 16. Zhabuye Salt Lake, China
- 17. West Taiji Nai'er, China
- 18. East Taiji Nai'er, China
- 19. Qinghai Salt Lake, China
- 20. Sichuan Aba, China
- 21. Jiajika, China
- 22. Maerkang, China
- 23. Ningdu, China
- 24. Pilgangoora, Australia
- 25. Greenbushes, Australia
- 26. Mount Cattlin, Australia
- 27. Mount Marion, Australia
- 28. Ohaaki, New Zealand

UnLimited r&d project

Co-production from deep geothermal brines

Objectives

- Sustainability of the resource
- Transfer from lab scale to on site operation
- Design and testing of an emission free technology
- Techno-economic analysis

Project data

- Partner: BESTEC, Universität Göttingen (UGOE), Hydrosion, Karlsruher Institut für Technologie (KIT-AGW), EnBW F & E
- Duration: Dec. 2020 until Dec. 2024
- Total cost: ca. 3,4 Mio. €
- Funding: ca. 2,7 Mio. €

Supported by:

General production design

Pre-selection from various option

Adsorption technology

Complex design with high requirements

13

UnLimited Project": EnBW Research & Development · 2022, June 23rd

Direct Lithium Extraction (DLE)

Adsorption and desorption

1. step

Status Quo and next steps

Tests on site and tecno-cost analysis

Recent status

- Lab tests secured the very good characteristics of manganese oxide
 - High adsorption capacity and selectivity
 - Sufficient stability of the adsorbent during operation (several hundred cycles tested)
 - Very good kinetics
- Tracer test started in January 2022
- Prototype design completed, installation on site in recent days
- /demonstrator tests scheduled in June 2022
- Geochemical process monitoring under design

Next Steps

- Tests with various adsorbents using a prototype/demonstrator
- Process optimisation
- Cost evaluation

1 μm

Lithium from geothermal brine at Bruchsal Summary & Outlook

Summary

- Germany is one of the biggest importer of lithium worldwide
- Today no relevant lithium deposit exists in Europe
- Lithium from hot geothermal brines might be an option
- The Bruchsal geothermal plant could provide an 800 t LCE per year, sufficient for appr. 20.000 e-mobility batteries

Open topics

- The sustainability of the reservoir needs to be secured
- The technology transfer from lab scale to a profitable on site facility needs to be mastered
- Zero carbon emission is an requirement
- The lithium production needs to meet commercial criteria

Contact

Department of Research and Development

MEng. Elif Kaymakci Dr. Thomas Kölbel Fettweisstraße 44 76185 Karlsruhe t.koelbel@enbw.com +49 721 63-17895

