Umicore business approach We transform metals into hi-tech materials We use application know-how to create tailormade solutions in close collaboration with our customers We close the loop and secure supply by recycling production scrap and end-of-life materials We aim to minimize the environmental impact and be the best employer and neighbour ### Unique integration in the battery value chain guaranteeing high speed to market, supply security and responsiveness to customer needs # Fundamentals of effective Recycling **Input**Flexibility for complex materials Pyrometallurgy Hydrometallurgy Mechanical processing Recovery of > 20 metals **Output**Maximize value creation Base metals Minor metals Precious metals ## Treating all kinds of Li-ion batteries Li-ion battery = **complex** mix of materials containing metals, organics, halogens: - Strong variation in cathode chemistries with more variation to come - Umicore has knowledge on battery chemistry evolution through its Rechargeable Battery Materials division Umicore's UHT-process is designed to handle this complexity and variability # Innovative technology for metal recovery 1887 Continuous innovation and investments for recycling efficiency and QEHS improvement. More than € 600 million of investments over the past 20 years and ongoing ... 2017 ## Experience in Industrial Scale Processing Precious metal recycling industrial scale >1000 t / day >350.000 t / year Delivers... Battery recycling industrial pilot scale 7000 t / year ...experience and know how to grow from current to future high volume scale #### Flexible on Size - Medium sizes → directly to furnace - Larger sizes after (partial) dismantling #### No pre-treatment necessary **Pre-treatment necessary** = direct feed to the furnace = dismantling to module/cell level *EV battery *HEV *XEV / Industry battery *F-bike battery module *Power tool battery *Laptop battery *Mobile phone battery battery $\pm 0,030 \, kg$ 0.5 - 0.7 kg1 – 1,5 kg ±3 kg 15 - 20 kg * Illustration from different sources 30 - 60 kg 150 - 500 kg # Drop-off points as customer oriented service network ### Growing with the market #### Governments' xEV targets by 2020: 14 countries have announced quantitative EV stock objectives, aspiring to bring 13 million EVs on the road by 2020: Germany: 1 million cumulative sales UK: 1.5 million cumulative sales France: 2 million cumulative sales China: 5 million cumulative sales Etc... Source: Global EV outlook 2016 - OECD/IEA 2016 several 100,000 metric tons in need for recycling in the years thereafter When? Uncertain, depends on actual sales xEV, battery designs, lifetime batteries, potential 2nd life,... How? Efficiency and cost of recycling are driven by volume ### Recycling technology → UHT #### Capacity: 7,000 t/y installed - ± 250 mio mobile phone batteries or - ± 200,000 HEV's or - ± 35,000 EV's #### Recycling efficiency > 50%: - Alloy: Cu Co Ni - Slag: for Li-Ion: used in construction (potential recovery Li) - for NiMH: rare earth concentrate (REE) - Flue dust: controlled separation of F #### Eco-efficient: - Close-to-zero waste - Advanced gas cleaning - Energy of battery used to obtain high temperature (incl. the caloric energy (electrolyte, plastic, metal)) Umicore Battery Recycling Scheme ### For discussion: Aspects, Conclusions and Perspective Battery recycling efficiency is specified as an EU standard and to ensure recycling quality to keep sustainability high and environmental impacts low: Battery recycling processes are only qualified if a recycling efficiency > 50% will be reached for all kind of batteries – Reference: EU Battery Directive Effective Battery Recycling (economic and ecological) requesting technological flexibility because of... - High dynamic of battery chemistry and high variety of composition - High variety of battery pack and module design - Different conditions of batteries (esp. damaged) require flexibility in handling and (pre)treatment to ensure safety → exchange of info / data along the waste & recycling chain is essential Furthermore effective Battery Recycling (economic and ecological) in a circular economy needs: - To be well understood as a final part of a (complex) chain with strong interfaces which has to be managed - Strong cooperation between involved partners with an interdisciplinary approach - Exchange of information as important part of a safety concept (e. g. BMS data → battery history) - Well established collection schemes well prepared for safe handling at high volume streams - Well established logistic solutions allowing management of high volume streams - To bring back resource-critical and valuable material (metals) - Reuse and 2nd life solutions / concepts - Clarification and aligning of waste classification / waste code on EU level → "individual" view doesn't help