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Summary 
A structural analysis based on multispectral satellite data as well as on high- and medium resolution 

DEMs improve the geological and tectonic knowledge of a working area within the framework of a 

geothermal exploration programme. 

The working area at Mt. Meru is situated in the Northern Tanzanian Divergence Zone. Three rifts of 

different orientations, creating complicated regional and local stress fields, dominate this area. 

The mapped lineaments represent faults, strongly connected to the youngest movements of the 

ongoing rifting of the Neogene rifts. Some lineaments form X-shaped conjugated faults, displaying 

the regional stress field and the present opening direction of the Natron-Manyara-Rift, which likely 

displays the recent dominant rift-direction. 

Faults of WNW orientations dominate the Mt. Meru area. Along these orientations, young 

hydrothermal alterations occur in the crater of the central ash cone.  

East of Mt. Meru, a concentration of intersections of all existing fault orientations is found, making 

this area highly permeable for any fluids and is possibly a location for further examinations.  

There are structural hints –to my knowledge not mentioned so far in literature- which strongly 

suggest the existence of a NW-SE orientated graben structure between Mt. Meru and Mt. 

Kilimanjaro (inferred “Meru Kilimanjaro Graben”). This “Meru Kilimanjaro Graben” would represent 

the “Mt. Kilimanjaro-deflected” prolongation of the Pangani Graben. 

Lake Momella represents very likely a former, now (debris avalanche-) eroded crater. 
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1 Scope of the Work 
Within the bilateral project “Geothermal Energy Development Tanzania” between BGR and the 

“Tanzanian Geothermal Development Company” (TGDC), the approach lies upon the estimation of 

the potential for hydrothermal energy at Mount Meru. 

A structural analysis of Mt. Meru and its surrounding area contributes to this aim by improving the 

tectonic/geological understanding of the working area. Faults of different ages, which can act as 

pathways for hydrothermal features can be detected as linear features (lineaments) at the earth´s 

surface.  

As vast parts of the working area are vegetated, steep and difficult to access, remote sensing in 

combination with focused ground truth is an excellent method to meet the requirements for structural 

mapping. The analysis is based on high- and medium resolution digital elevation models (DEM) and 

multispectral data. 

A first field-scoping mission in combination with a planning workshop in Arusha has been conducted 

together with partners of TGDC from 17/10/2016 to 26/10/2016. Findings of the field-scoping 

mission were presented at the workshop. 
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2 Working Area 
The core working area for the geothermal exploration programme comprises Mt. Meru and its 

closest vicinity (Fig. 2.1, yellow frame, Fig. 2.2). For structural analyses, it is necessary to consider 

also the surrounding area with its variety of tectonic features (Fig. 2.1). 

 
Figure 2.1:  The major working area and the location of the core working area at Mount Meru 

(yellow frame) in Tanzania. 30 m SRTM elevation model shaded relief. 
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Figure 2.2: The working area with Mt. Meru. Landsat TM bands 7,4,1 (RGB). Projected onto high 

resolution 12m TerraSAR-X WorldDEM (Mt. Meru area only) and 30m SRTM DEM 
shaded relief. 
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3 Data 
The following data were used within Quantum GIS (version 2.18.2) for further analysis and 

lineament vectorization: 

• Enhanced and geocoded satellite images: 

o Landsat TM (30m ground resolution) acquired February, 02, 2000, 

o Landsat OLI (30m ground resolution) acquired January, 08, 2016, 

o Landsat OLI (30m ground resolution) acquired March, 10, 2016, 

o Landsat OLI (30m ground resolution) acquired August, 03, 2016, 

o Aster GDEM 30m digital elevation model, 

o SRTM 30m digital elevation model, 

o TerraSAR-X WorldDEM 12m digital elevation model. 

• Geocoded raster data: 

o Geological map Arusha Quarter Degree Sheet 55 (WILKINSON, P. ET AL. 

1983). 

• Information from overview-field work (4 days only): 

o Shape and visibility of lineaments, 

o Additional geological and tectonic information, 

o Field photos, 

o Waypoints (WP) of findings and locations of photo documentations from GPS 

measurements. 

The spatial reference system used for this study is UTM 37 S, WGS 84. 

 

The following layers have been created:  

• Lineaments 

• Normal Faults  

• Normal Faults Assumed 

• Mt. Meru Slope Angles (0°-90°) based on TerraSAR-X WorldDEM 

• Shaded relief Maps from all available DEMs 
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• Waypoints with corresponding data tables concerning information from field work (lithology, 

photos etc.). 

The data including additional field photos with locations not mentioned in this report are attached 

on DVD to this report as a Quantum GIS-project. In figures, that show field photos, the location 

refers to a GPS waypoint (WP). All waypoints are listed in a table and a corresponding map in the 

appendix to allow traceability of the field survey.  
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4 Geology 
The core working area around Mount Meru is situated in the Northern Tanzanian Divergence and 

is built up of Precambrian rocks of the Tanzania Craton (Archaean) and the north-south trending 

Mozambique orogenic fold belt (Archean/Proterozoic, BEECKMANS, B., 2014, DAWSON (2008), Fig. 

4.1). The Tanzania Craton has an elevation of over 1100 m. This reflects the existence of a 

subcratonic plume whose effects can be seen in the volcanics of both branches of the rift system 

(BEECKMANS, B., 2014). 
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Figure 4.1:  The Northern Tanzanian Divergence, DAWSON (2008). 
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4.1 Precambrian 

The rocks of the Tanzania Craton represent three formations: 

1. Kavirondian, 

2. Nyanzan and 

3. Dodoman. 

They consist of Archaean metasediments, which were intruded by granites and migmatised during 

three short tectono-metamorphic events (BEECKMANS, B., 2014). 

The Mozambique Fold Belt was formed during the Usagaran metamorphic event by subduction at 

the southeastern end of the Tanzania Craton (QUENNELL ET. AL. 1956 in BEECKMANS, B., 2014). The 

Mozambique Fold Belt represents a polycyclic orogenic complex, whose last event ended 650 Ma 

B.P. 

The rocks of the Mozambique Fold Belt comprise two major series: 

1. The higher Crystalline Limestone Series with quartzites, dolomitic marbles, graphitic 

marble, graphites, mica schists, kyanite gneisses and metabasites (QUENNELL ET. AL. 

1956 in BEECKMANS, B., 2014) and 

2. The lower Masai Series with quartzo-feldspatic gneisses, charnockites and hornblende-

biotite gneisses (Fig. 4.2). 

  
Figure 4.2: Precambrian gneiss transported from the deeper subsurface and exposed by the 

eruption of (Cenozoic) Mungu Crater, SW of Mt. Meru (WP 23). 
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4.2 Cenozoic 

Mount Meru – a 4565m high stratovolcano – and its surrounding area is built up of multi-phase 

volcanic products as flood basalts (Fig. 4.5) - which represent the oldest - lavas, pyroclastics and 

lahars (Figures 4.3, 4.4), which were reinterpreted as debris avalanches by DELCAMP ET. AL. (2016). 

All these volcanites overlie the Precambrian basement. 

 
Figure 4.3: The Geology of Mt. Meru area after WILKINSON, P. ET AL. (1983) projected onto 

TSX WorldDEM and SRTM DEM, shaded relief. Legend see next figure. 
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Figure 4.4: The Geology of Mt. Meru area after WILKINSON, P. ET AL. (1983).  
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Figure 4.5: Flood basalt outcrop exposed in a vertical profile of Mungu Crater, SW of Mt. Meru 

(WP 26). 
 

A striking feature of Mt. Meru is the missing eastern flank (Fig. 4.6). This typical horseshoe-shaped 

scar formed after a sector collapse of Mt. Meru approximately 8600 years B.P. (SIEBERT, L., 1984) 

respectively 7000 years B.P. (after WILKINSON, P. ET AL., 1983), depositing huge debris avalanches 

(DELCAMP ET. AL., 2016) (described as “lahars” by WILKINSON, P. ET AL., 1983). These debris 

avalanches reach out to the lower slopes of Mt. Kilimanjaro to the east and cover approximately 

1500 km2 (WILKINSON, P. ET AL., 1983). ROBERTS (2002) calculated the volume of the debris 

avalanches to 28 km3 by modelling the pre-collapse surface of Mt. Meru. 
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Figure 4.6: The collapsed eastern flank of Mt. Meru. Slope angle map derived from TSX 

WorldDEM projected over TSX DTM shaded relief. Perspective view into the crater 
with the central ash cone. 1.5 X vertical exaggeration. WP 13 indicates the position 
of the field photo (see figure 4.7). 

 

 
Figure 4.7: Mt. Meru crater with the central ash cone, view to the west, from WP 13 (see figure 

4.6). 

Mt. Meru is an active volcano, which last erupted black ash from the central ash cone (Figures 4.6, 

4.7 and 4.8) in 1910, furthermore, significant fumarolic activity was recorded 1954 in the central ash 

cone (Fig. 4.9) and might have ceased before 1974 (WILKINSON, P. ET AL., 1983). Warm, mineralised 

springs (23°C) are present especially in the eastern crater area (Fig. 4.10). 
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Figure 4.8: a: Youngest lavas of the Ash Cone Group with lava dome (red arrow), view to the 
south, WP9. b: Youngest lavas of the Ash Cone Group. View to the east with Mt. 
Kilimanjaro in the background. 

 

 
Figure 4.9: Hydrothermal alterations at the inner west- and east flanks of the inner ash cone´s 

crater. View to the south, WP11. 
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Figure 4.10: Warm spring (23° C) in the eastern crater area, WP18. 
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5 Tectonic setting 
Three distinct rifts with different orientations (FOSTER ET AL., 1997) dominate the working area in the 

Northern Tanzanian Divergence Zone:  

1. The Natron-Manyara-Balangida Rift (N-S-trending),  

2. the Eyasi-Wembere Rift (NE-trending) and  

3. the Pangani Rift (NW-trending).  

The rifts are named after the lakes, which have developed on the rift bottoms. They transect the 

lithospheric boundary between the Archean (Tanzania Craton) and the Proterozoic (Mozambique 

orogenic fold belt), (Figure 4.1). An example of tectonics of Archean rocks is shown in figures 5.1 

and 5.2, where multiphase folding is observed (orange lines). The NW trending Pangani Graben is 

built up by rocks of the Proterozoic Mozambique orogenic fold belt.  

The orientations of the major rifts and the orientations of aligned volcano-chains (Fig. 5.2), are  

variable and display the changing tectonomagmatic conditions and are a result of the interplay 

between: 

• The regional stress field, 

• the local magma-induced stress field and 

• stress rotations by mechanical interaction of rift segments (MUIRHEAD ET. AL., 2015). 

The intrusion of aligned volcanic-chains (Figure 5.2) widely follows Precambrian basement 

structures and (reactivated) faults. 
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Figure 5.1: Northern Tanzanian Divergence Zone with Natron-Manyara-, Eyasi- and Pangani 

rifts (named after the lakes often developed on the rift bottoms) with different 
orientations. One example for Archean basement structures, which shows 
multiphase folding is highlighted by orange lines. The NW trending Pangani Graben 
is built up by rocks of the Proterozoic Mozambique orogenic fold belt. Shaded relief 
SRTM DEM mosaic. 
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Figure 5.2: The variable orientations of aligned volcano-chains (yellow stripes showing 

examples) display the changing tectonomagmatic conditions. The intrusion widely 
follows Precambrian basement structures and (reactivated) faults. One example for 
Archean basement structures, which shows multiphase folding is highlighted by 
orange lines. The NW trending Pangani Graben is built up by rocks of the Proterozoic 
Mozambique orogenic fold belt. Shaded relief SRTM DEM mosaic. 

 

5.1 Lineaments 

The majority of the mapped lineaments represent faults (Fig. 5.3). Wherever possible, “normal 

faults” were distinguished from other “lineaments”. They are strongly connected to the ongoing 

rifting of the Neogene rifts. Normal faults impressively offset older shield volcanoes as Gelai and 

Ketumbaine (Fig. 5.4). This faulting follows a NE direction at Gelai and turns to a NW direction 

slightly farther south at Ketumbaine, displaying the change of the structural trends of the 

Precambrian basement (see also Figure 4.1). 

At the inner northern crater flank of Mt. Meru, some lineaments can be attributed to a dyke intrusion 

of the pyroclastics of the Main Cone Group (Fig. 5.5). 
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Figure 5.3: Examples for lineaments and normal faults (assumed normal faults, to be explained 

later below) in the major area of Mount Meru. Shaded relief SRTM DEM mosaic. 
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Figure 5.4: The shield volcanoes Gelai and Ketumbaine are offset by normal faulting (red arrows 

showing examples), which turns from a NE- at Gelai to a NW direction at Ketumbaine 
(red arrows). This can be attributed to a change of the structural trend of the 
Precambrian basement (see Fig. 4.1). a: Landsat TM bands 7,4,1 (RGB) supply 
spectral information about the surface´s character: “false colours” e.g. cyan: salt crust 
of Lake Natron, black: clear water, pink: bare rock/soil. green: vegetation. b: shaded 
relief 30m SRTM DEM enhances structures like faults (red arrows, examples). 



Structural analysis of Mt. Meru and the surrounding area based on Remote Sensing data 

 

 20 

 
Figure 5.5: At the inner northern flank of Mt. Meru, some mapped lineaments can be attributed 

to a dyke intrusion of the pyroclastics of the Main Cone Group. a: Field Photo, view 
to NE (WP9). b: The approximate field of view of the field photo (a). c: Mapped 
lineaments at Mt. Meru. Landsat OLI, bands 7,5,3 (RGB). 

 

Some lineaments form X-shaped conjugated faults, displaying the regional stress field and the 

present opening direction of the Natron-Manyara-Rift. This direction most likely displays the recent 

dominant rifting (Fig. 5.6).  

Lineament mapping was focused to the core Mt. Meru area and to a certain extent also to the 

surrounding area outside Mt. Meru to examine and exemplify fault- and lineament directions in a 

larger framework. All directions of the dominant rifts are reflected also inside the relatively small 

working area (Figures 5.7, to 5.11). The orientations of the assumed normal faults were not 

considered in the rose diagrams. The rose diagrams are not weighted by lineament lengths. 



Structural analysis of Mt. Meru and the surrounding area based on Remote Sensing data 

 

 21 

 
Figure 5.6: The directions of maximum principal stress can be derived from satellite imagery, 

regarding the X-shaped stress indicators (red lines). The acute angle between 
conjugated faults (red lines, three examples of more existing) is bisected by the 
maximum principal stress direction (Pmax). The direction of effective minimal principal 
stress direction (Pmin) corresponds in this example approximately to the opening 
direction of the Natron-Manyara-Rift (grey arrows). 
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Figure 5.7: The orientations of the dominant regional rifts (Pangani Graben, Natron-Manyara and 

Lake Eyasi) are reflected in the extended working area (yellow polygon). 
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Figure 5.8: Lineaments and normal faults with rose diagram of the extended working area (yellow 

polygon). 
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Figure 5.9: Lineaments and normal faults with rose diagram of the working area outside the “core 

area” of Mt. Meru (yellow polygon). The NW-SE-orientation following the Pangani 
Graben is the dominant fault orientation. 



Structural analysis of Mt. Meru and the surrounding area based on Remote Sensing data 

 

 25 

 
Figure 5.10: Lineaments and normal faults with rose diagram of the “core area” of Mt. Meru (yellow 

polygon). WNW-ESE orientations dominate this area. 
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Figure 5.11: Lineaments and normal faults with rose diagram of the “core area” of Mt. Meru (yellow 

polygon). WNW-ESE orientations dominate this area. The inset shows hydrothermal 
alterations of the inner ash cone corresponding to this direction. 
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The direct Mt. Meru area is affected by all orientations of re-activated faults, which can also be found 

in the surrounding area. WNW-ESE orientations are dominant. This orientation shows hydrothermal 

alteration in the inner ash cone (Fig. 5.11, see also larger field photo in Fig. 4.9). 

East of Mt. Meru two major bended normal faults occur (Figures 5.12 and 5.13). The western one 

might have triggered the Ngare Nanyuki/Ongadongishu Lahars (reinterpreted as debris 

avalanches). It forms a steep step at the eastern crater rim and is partially covered by a small part 

of a later debris flow, which is attributed to the Momella Lahar (Fig. 5.12, dark brown colour, 

reinterpreted as debris avalanche).  

The eastern normal fault might have triggered the Momella Lahar (reinterpreted as debris 

avalanche), as it widely offsets the older debris avalanche and seems to affect the Momella Lahar 

(reinterpreted as debris avalanches) only to a minor extent (Figures 5.12, 5.13).  

The discontinuous bending of the fault traces show rift orientations of the active Natron-Manyara-, 

Eyasi- and Pangani-Rifts. 
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Figure 5.12: Two major bended normal faults east of Mt. Meru, which possibly have triggered the 

debris avalanches. Geological map (WILKINSON, P. ET AL., 1983) over shaded 
relief DEMs. 
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Figure 5.13: Two major bended normal faults east of Mt. Meru, which possibly have triggered the 

1) Ngare Nanyuki/Ongadongishu Lahar (reinterpreted as debris avalanche) and led 
to the collapse of the eastern flank and 2) the Momella Lahar (reinterpreted as debris 
avalanches). Slope angle map derived from TSX WorldDEM projected over TSX 
DTM shaded relief. Perspective view into the crater with central ash cone to the west. 
1.5 X vertical exaggeration. 
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5.2 Graben Structures 

Many Graben structures in the surrounding area of Mt. Meru have NW-SE orientations like the 

dominant Pangani Graben. Some have flanks with chains of aligned volcanoes like the Oljoro 

Graben (Fig. 5.14). Aligned volcanoes reflect faults of the deeper basement also in other places 

(Fig. 5.16).  

 
Figure 5.14: The NW-oriented Oljoro Graben with volcano-chains running parallel and NW-

angular towards the flanks (transparent yellow stripes). The inset shows the angular 
volcanic chain as seen from Mungu Crater. Subset of the geological map 
(WILKINSON, P. ET AL., 1983) over shaded relief DEM. 

 

There are structural hints, which strongly suggest the existence of a NW-SE orientated graben 

structure between Mt. Meru and Kilimanjaro (inferred “Meru Kilimanjaro Graben”). The shaded relief 

DEM clearly shows a (debris avalanche-filled) depression with linear borders. The western flank is 

covered with the major “volcanic-chain” of Ngurdoto crater and others (Fig. 5.15), the eastern flank 

at the foot of Mt. Kilimanjaro shows only minor aligned cones, which cut the inferred fault in similar 

NW-angles as at the western flank of the Oljoro Graben (Fig. 5.14, transparent yellow stripes). At 

the southern end of the assumed normal fault is an occurrence of hot springs (Fig. 5.15a, red dot). 
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The postulated “Meru Kilimanjaro Graben” would represent the “Mt. Kilimanjaro-deflected” 

prolongation of the Pangani Graben. The structure possibly runs even farther to NE, what is 

suggested by an eastward tilted block north of the town of Namanga/Kenya (Fig. 5.16). LE GALL ET. 

AL. (2008) attribute this block to be part of the Aswa shear zone running NW from the eastern 

shoulder of the Pangani Graben through Mt. Kilimanjaro. 

 

  
Figure 5.15: a: The NW-oriented graben structure between Mt. Meru and Kilimanjaro with normal 

faults, assumed normal faults and volcanic-chains (transparent yellow stripes along 
the flanks. The topographic heights inside the structure represent the debris 
avalanches emerging from Mt. Meru. Colour coded DEM over shaded relief DEMs. 
b: The un-interpreted shaded relief DEMs reveal the linear graben structure between 
Mt. Meru and Mt. Kilimanjaro even better. 
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Figure 5.16: Overview of Graben structures (most are NW-oriented), faults and fault-related 

volcanic-chains of the expanded working area over shaded relief DEMs.  
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5.3 Lake Momella 

Lake Momella is situated in a direct line of a volcanic-chain. Its round shape fits perfectly to the 

shapes of the other aligned craters. Lake Momella was directly hit at least twice by tremendous 

debris avalanches. For these reasons, it can strongly be assumed, that it represents a former 

cone/crater, which was overridden and eroded by the debris avalanches. 

 

  
Figure 5.17: Lake Momella is situated in a direct line of a volcanic-chain. It represents very likely 

a former cone/crater, which was overridden and eroded by the debris avalanches. a: 
Geological map (WILKINSON, P. ET AL., 1983) over shaded relief DEMs. b: Shaded 
relief DEMs. 
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6 Conclusions 
East of Mt. Meru an intersection of many different fault orientations can be found. Hence, this 

location can be considered as highly permeable for groundwater (besides locations with 

occurrences of porous volcanites) and other fluids and is possibly a location for further 

examinations. Also at this location, one maximum of subsidence as detected by InSAR studies, 

occurs (out of several more existing; see report “Ground movements at Mt. Meru detected by 

InSAR”, in process).  

Fault orientations east of Mt. Meru: 

• WNW orientation is dominant and connected with young hydrothermal alterations in the 

central ash cone, 

• NW (Pangani Rift, Oljoro Graben, Lembolos Graben, Engaruka Depression, inferred “Mt. 

Meru Kilimanjaro Graben“, 

• NE (Eyasi Rift), 

• NNE (Natron-Manyara Rift). 

Further findings: 

• Two major normal faults at the eastern flank of Mt. Meru possibly triggered the 1) Ngare 

Nanyuki/Ongadongishu Lahar (reinterpreted as debris avalanche) and led to the collapse of 

the eastern flank and 2) the Momella Lahar (reinterpreted as debris avalanche). 

• A “Mt. Meru Kilimanjaro Graben” can be inferred between these two mountains. It possibly 

represents the prolongation of the “Kilimanjaro-deflected” Pangani Rift. 

• Lake Momella represents very likely a former, now (debris avalanche-) eroded crater. 
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Appendix 
Waypoints of measurements and field photos as mentioned in figures. The datum of the coordinates 
(digital degree) is WGS84. 

 

WP No. 
X 

(longitude) Y (latitude) Altitude (m asl) Date 
1 36.8469790 -3.2378810 1623.3 18.10.2016 15:19 
2 36.8286500 -3.2444810 1928.3 19.10.2016 14:58 
3 36.7870400 -3.2463260 2615.1 19.10.2016 17:02 
4 36.7857520 -3.2473400 2612.2 19.10.2016 17:24 
5 36.7995360 -3.2292860 2495.4 20.10.2016 07:02 
6 36.7864670 -3.2351490 2620.9 20.10.2016 09:13 
7 36.7871110 -3.2306770 2638.9 20.10.2016 09:47 
8 36.7780820 -3.2316020 2848.3 20.10.2016 11:01 
9 36.7660990 -3.2291450 3355.6 20.10.2016 13:17 
10 36.7634190 -3.2367580 3589.4 20.10.2016 14:37 
11 36.7625870 -3.2369910 3594.9 20.10.2016 14:46 
12 36.7620960 -3.2367770 3597.4 20.10.2016 15:04 
13 36.7862270 -3.2427500 2571.2 21.10.2016 09:55 
14 36.7856790 -3.2437010 2582.9 21.10.2016 10:02 
15 36.7852510 -3.2492120 2615.1 21.10.2016 10:27 
16 36.7849570 -3.2486600 2595.9 21.10.2016 10:41 
17 36.7827680 -3.2509200 2578.4 21.10.2016 11:10 
18 36.7894790 -3.2451900 2557.7 21.10.2016 13:18 
19 36.6399640 -3.4425150 1222.2 22.10.2016 11:40 
20 36.6088480 -3.5114040 1262.8 22.10.2016 12:22 
21 36.6068540 -3.5204910 1235.9 22.10.2016 13:09 
22 36.6069590 -3.5204840 1240.2 22.10.2016 13:23 
23 36.6081160 -3.5227050 1253.9 22.10.2016 13:35 
24 36.6036030 -3.5296210 1246.9 22.10.2016 14:00 
25 36.6019630 -3.5287530 1209.7 22.10.2016 14:21 
26 36.6012590 -3.5282940 1187.8 22.10.2016 14:32 

GateMomella 36.8498200 -3.2336210 1601.4 19.10.2016 14:29 
Hotspring 37.1937730 -3.4439540 853.5 23.10.2016 11:14 
Hut 36.7996460 -3.2294430 2506.5 19.10.2016 18:41 
Joined River 36.8056580 -3.2482190 2229.4 21.10.2016 14:47 
Lake Momella 36.8915350 -3.2220840 1452.2 18.10.2016 17:08 
Lake Momella, Big 36.9058870 -3.2195040 1451.0 18.10.2016 17:24 
Mungu Crater 36.6058460 -3.5252720   
Swamp 36.8332670 -3.2468910 1892.9 19.10.2016 14:48 
Tanapa 36.6547320 -3.3756560 1375.0 18.10.2016 11:54 
View Ngurdoto 36.7917120 -3.2422540 2488.0 19.10.2016 16:14 
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Waypoints of the working area projected into SRTM and TSX WorldDEM elevation model. 
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