

Influence of geological heterogeneity on the saltwater freshwater interface position in coastal aquifers – physical experiments and numerical modeling

A.S. Chowdhury¹, **L. Stoeckl**^{1,2} and G. Houben²

¹Institute of Water Resources and Environmental Management, Leibniz University, Hannover (e-mail: Leonard.Stoeckl@bgr.de) ²Federal Institute for Geosciences and Natural Resources (BGR), Hannover

Example: Coastal zone of Bangladesh

- ► Highly heterogeneous geological formation (delta)
- Coastal groundwater is under serious threat of saline water intrusion
- ▶ Projected sea level rise of 30-50 cm by the year 2050

Objectives

- ► Influence of different length scales in geological heterogeneity on the saltwater - freshwater interface position
- ► Effects of sea level rise on saltwater intrusion in heterogeneous porous aquifers

Schematic diagram of the model setup

Experimental Set-up

- ► Trapezoidal shaped aquifer: bottom length 1.18 m, top length 0.62 m, height 0.35 m
- ► Freshwater recharge rate of 1.8 l·h⁻¹
- ➤ Different tracer dyes (Indigotine-blue, Uranine-yellow and Eosine-red) for visualization (concentration 0.3 g·l⁻¹)
- Three different sands with different hydraulic conductivities: fine (165 m⋅d⁻¹), medium (355 m⋅d⁻¹) and coarse (1229 m⋅d⁻¹)
- ► Identical compartment height (3.5 cm) but variable compartment lenght (9 cm, 18 cm, 27 cm)
- Four seawater levels of 0.210 m, 0.245 m and 0.280 m and 0.315 m

Compartment length 9 cm

Compartment length 18 cm

Compartment length 27 cm

Numerical modeling

- ► FEFLOW 6.1 used for numerical simulations
- ► Variable density (and unsaturated) flow and mass transport model
- ► Homogeneous equivalent modeled for comparison

Sand Type	Hydraulic Conductivity (m/day)	Porosity	Longitudinal dispersivity (m)	Transverse dispersivity (m)	Van Genuchten Parameter	
					α	n
Coarse	1229	0.41	0.01	0.001	30	3
Medium	355	0.45	0.005	0.0005	25	2.5
Fine	165	0.47	0.001	0.0001	20	2

Conclusions

- Physical models and numerical simulations of interface geometry show good fit for all sea level studied
- ► With greater compartment lenght, salt water intrusion reaches further inland
- ► Homogeneos equivalent generally shows further sea water intrusion and might therefore be used as first estimation (when pumping is not included)

References

Sea level variation

