Deuterium labeling of soil water movement in the Cuvelai-Etosha Basin, Namibia

Matthias Beyer*, Marcel Gaj, Paul Koeniger, Josefina Hamutoko, Shoopala Uugulu, Heike Wanke, Christoph Lohe, Thomas Himmelsbach & Max Billib

1. Motivation & Objectives

Water movement in the unsaturated zone, where a complex interaction of climate, vegetation, soil type and geology is present, is yet not fully understood. The stable isotopes deuterium (²H) and oxygen-18 (¹⁸O) have been shown suitable for such investigations and a description of related processes within the unsaturated zone. In this study, a field experiment using deuterated water as an artificial tracer (²H₂O, 70%) was conducted to characterize water movement during and after synthetic rain events.

Main research questions addressed are:

- description of water and ²H movement at two differing sites after a rain event of known amount and intensity
- identification and interpretation of important processes within the unsaturated zone (deep drainage, root water uptake, hydraulic redistribution, preferential flow)
- determination of potential for local groundwater recharge at investigated sites

3. Results

- clear shift of ²H peak
- very high hydraulic conductivity (ks~1,700 cm/d)
- no upward water movement of labeled water identified at Eenhana
- water movement up to depth, where no evaporation is expected
 (2.4 m after 10 d) → potential groundwater recharge area

Fig. 5:

Top: Okongo site with sandy loam underlain by thick calcrete layer at ~1.1m depth.

Right: Water content and normalized ²H₂O at Okongo site 1d, 2d and 5 d after labeling.

- less pronounced shift of tracer peak
- upward water movement of tracer observed (upper 30 cm)
- high hydraulic conductivity at upper horizon (ks~1,000 cm/d)

calcrete layer

 accumulation of water on top of impermeable calcrete available for plants and evaporation → if recharge, then through cracks/fissures

2. Methodology

Fig. 1: Application of deuterated water at 25 cm depth

Fig. 2: Soil sampling at Eenhana forest site

- Selection of study sites with focus on different hydraulic and morphological characteristics: a) deep sandy soil (Fig. 4) and b) sandy loam underlain by calcrete layer (Fig. 5)
- 2. Pre saturation of soils \rightarrow triggering of rainy-season condition
- 3. Application of ~2 mm (500ml) deuterated water at 25 cm depth (Fig. 1)
- 4. Re filling of soil; Artificial rain event of ~20 mm
- 5. Collection of soil samples at each 10 cm to a maximum depth of 2.5 m after 1 d, 2 d (not shown here), 5 d and 10 d, respectively (Fig. 2)
- 6. Cryogenic vacuum extraction of soil water (Koeniger et al., 2010)
- 7. Determination of ²H using a Thermo Finnigan Delta Plus IRMS connected to H device
- 8. Lab analysis of grain size distribution, soil water content and soil hydraulic properties

Fig. 3: Cuvelai-Etosha
Basin has a size of 97600
km³ and is shared almost
equally by Namibia and
Angola. Climate is
characterized as semiarid
with a high variability
(Mendelsohn et al., 2013)

4. Discussion & Outlook

- study serves as pre-experiment for infiltration behavior
- Investigation provides indicators for existence of preferential flow paths and areas of main root activity
- main purpose of investigation will be answered after deep sampling (>5 m) campaign after rainy season:
 Can ²H be found after rainy season?
- indicator for GW recharge
- role of deep roots yet unclear

 modification of experimental setup planned
- investigation of thresholds for recharge events or situations (extreme events, wet spells,...) → modeling studies

References

Koeniger, P., Leibundgut, C., Link, T., Marshall, J.D., 2010. Stable isotopes applied as water tracers in column and field studies. Organic Geochemistry 41, 31–40.

Mendelsohn, J. M., Jarvis, A., & Robertson, T., 2013. A profile and Atlas of the Cuvelai-Etosha basin. RAISON & Gondwana Collection, Windhoek, Namibia, 170p.

