German Lebanese Technical Cooperation Project
Protection of Jeita Spring

Fact Sheet

I. Introduction
- Water Establishment Beirut-Mount Lebanon (WEBML) in charge of:
 - Domestic- and agricultural supply within the Jeita groundwater (GW) catchment;
 - Supply for Beirut.
 - Purification at Dbayeh treatment plant.
 - Supply within the JSC is based on springs (Assal, Labbane, Afqa, etc.) and Chabrouh.
 - Supply in Beirut: mainly Jeita, but also other springs (e.g. Kashkoush, Antelias, etc.).

II. Problem Statement
- High seasonal variation of Jeita's discharge (1-55 m³/s).
- Water shortage in Beirut between Sep and Nov.
- Water shortage caused by:
 1. Rapid depletion of GW systems after snow melt;
 2. Inefficient tapping of Jeita and water conveyance infrastructure (e.g. 30% loss between Jeita and Dbayeh).
- Dimension of Jeita-Dbayeh canal and tunnel (3.1 m³/s) and Dbayeh treatment plant (320,000 m³/d) insufficient.
- Water canal is facing multiple hazards (e.g. drilled wells, infiltrating substances, etc.).
- Old infrastructure (>100 years) is not reliable.
- Treatment in Dbayeh of insufficient operating grade and quality.
- Low trust of citizens in public water supply.

III. Domestic Distribution & Conveyance
- Conveyance of:
 - Jeita spring;
 - Jeita wells (x 2);
 - Kashkoush spring;
 - Kashkoush wells (x 6 wells);
 - Nahr el Kalb surface water-intake at Mokhada dam.
- Max. delivery per day: 255,000 m³ (max. capacity of tunnel).
- Jeita-Dbayeh canal and tunnel is a single-lane conveyor to Dbayeh: No alternative line in case of physical collapse. If damaged, Beirut will not have water for a long time.

- Local spring water is used for domestic purpose within the GW catchment.
- Quality of spring water depends on landuse practices within the catchment.
- Water trucks deliver water from private owned wells to customers.
- Water vendors sell water gallons to households.
- Approx. 700 private wells.
- None of the decentral water sources is subject to governmental control!

IV. Dbayeh Treatment Plant
- The only water treatment plant for Beirut.
- Max. treatment capacity (in full efficiency): 320,000 m³.
- Treatment steps:
 1. Screening;
 2. Flocculation;
 3. Filtration (rapid sand filters);
- Poor maintenance has caused deterioration of treatment systems.
- Poorly equipped laboratory adds uncertainty to the quality of output.

- Storage volume: 9.3 MCM.
- Main inflow from Labbane spring, small inflow from internal catchment.
- Good water quality due to long residence time of stored water.
- Assal spring: Sufficient and safe supply in Keserwan throughout the year.

V. Irrigation Conveyance
- Between May & Sep: 60,000 m³ must be diverted from Jeita-Dbayeh canal for "irrigation".
- Supply system not demand driven (continuous supply).
- Spring water from Afqa, Assal, Hadid, Labbane and Rouaiss.
VI. Recommendations

Resources Management

- Establish GW protection zones.
- All springs that are used for domestic supply must be fenced in:
 - Access only granted to WEBML- and ministerial staff;
 - No access to farmers;
 - No access to livestock.
- Construction of additional reservoirs (Nahr es Salib or -Zirghaya) to increase available resources for the period Sep-Nov.
- Establish managed aquifer recharge (MAR) in Nahr Ibrahim to increase resources in Jeita’s aquifer.
- Establish a hydrological monitoring system at spring discharges and Dbayeh intake to allow reliable water infrastructure planning.
- Dbayeh:
 - Increase quantitative treatment potential;
 - Introduction of continuous maintenance scheme;
 - Improve laboratory capacity and increase monitoring frequency and parameters.

Conveyance

- Installation of water meters: only when supply is metered, volumetric pricing schemes should be established - which are the basis for water savings.
- Introduce volumetric block-pricing schemes.
- Establish leak-detection system to reduce physical water losses.
- Improve tapping at Jeita spring to reduce overflow and unaccounted water.
- Renew Jeita-Dbayeh water conveyor:
 - Construction of a two-pipe conveyor (alternative pipe for maintenance and emergency);
 - Conveyor needs to be completely sealed to prevent pollution and illegal connections;
 - Enlarge flow capacity to 400,000 m³/d.
- Reform agricultural water rights for properties attached to the canal: Since in many cases there is no agricultural activity, irrigation water supply is not justified.
- Introduce demand driven irrigation supply system to reduce wasting of water.
- Establish hydropower generation units along topographic gradients.

WEBML is in charge of domestic water supply in Keserwan, incl. potential water storage options.