Comparison of various numerical schemes for simulating fluid flow in variably saturated porous media

Heejun Suk and Kang-gun Lee

1Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)
E-mail: sxh60@kigam.re.kr
2School of Earth and Environmental Sciences, Seoul National University

Introduction and Objectives

- Prediction of fluid movement in unsaturated soil using Richards equation
- Nonlinear Richards equation in variably saturated porous media connected with constitutive relations, heterogeneities, irregular geometries, and complex boundary conditions
- Difficulty in solving the Richards equation originated from its nonlinear characteristic
- To demonstrate a full linearization of the Richards equation with Gardner constitutive relations by using Kirchhoff integral transformation in a transient variably saturated flow
- To show that the integral transformation approach is not only more computationally efficient but also more robustness than other existing numerical methods: h-based model, Celia model (Celia et al., 1990), Kirkland model (Kirkland et al., 1992), and 3DFEMWATER (Yeh et al., 1992)

Mathematical Formulation

Governing Equation

\[\nabla \cdot (K \cdot \nabla (h + z)) + Q = \frac{\partial h}{\partial t} \]

Gardner Constitutive Relations

\[\phi = K \cdot (\phi_{\text{sat}} - h)^{k} \]

Boundary Condition

\[n \cdot \nabla \cdot (K \cdot \nabla (h + z)) = \frac{\partial h}{\partial t} \]

Kirchhoff Integral Transformation

\[\phi = \frac{1}{h} \int_{0}^{h} \frac{\partial h}{\partial t} \, dh \]

Linearized Governing Equation and Boundary Conditions

\[\nabla \cdot (K \cdot \nabla (h + z)) + Q = \frac{\partial h}{\partial t} \]

Numerical Implementation

\[
\begin{align*}
[CK]\frac{\partial}{\partial t} + [DKV] \cdot \nabla h + [G] = 0 \\
[CK] = \sum_{j=1}^{N} V_{j} \cdot K \cdot V_{j} \cdot \nabla \phi, \\
[DKV] = \sum_{j=1}^{N} V_{j} \cdot K \cdot \nabla V_{j} \\
[G] = \sum_{j=1}^{N} V_{j} \cdot \nabla \phi \cdot \nabla h + \sum_{j=1}^{N} V_{j} \cdot K \cdot \nabla \phi \cdot \nabla h
\end{align*}
\]

Numerical Experiments

Example 1

This example is selected to represent the simulation of a one-dimensional homogeneous problem. The conceptualization of the problem is given in terms of initial and boundary conditions and material properties in Fig. 1. For numerical simulations, the h-based model and Kirchhoff integral transformation method are given. For this problem, water is applied to the top of a vertical soil column at a constant rate of 20 cm/day for about 70 min. The unsaturated characteristic hydraulic properties of the soil in the column are characterized with Gardner relationship.

Example 2

Fig. 2 illustrates very good agreement between the two methods. CPU with Kirchhoff transformation is faster 1.7 times than with h-based model.

Example 3

A basic case solution to a Richards equation was calculated for the purpose of comparing and evaluating the six models.

Conclusion

- Kirchhoff integral transformation in a transient variably saturated flow makes Richards equation with Gardner constitutive relations full linearized form
- Kirchhoff integral transformation approach is not only more computationally efficient but also more robustness than other existing models

ACKNOWLEDGEMENT

This research was supported by the Korea Ministry of Environment as "The GAIA Project (Grant no. 173-092-009)"