## **The Insidious Nature of Groundwater Contamination – The Great Need for Protection**

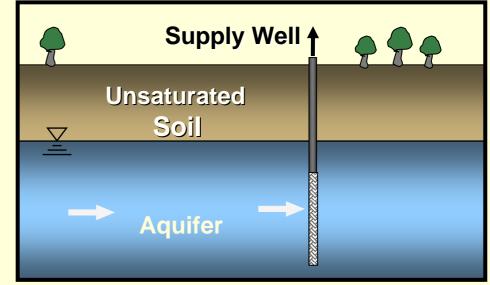
Perry L. McCarty Department of Civil and Environmental Engineering Stanford university

# **Fresh Water Supply**

- Availability of and access to freshwater are among the most critical natural resources issues facing the world
- 2 billion people in 40 countries are currently affected by inadequate water supply



2nd UN World Water Development Report, March 2006


# **Fresh Water Supply**

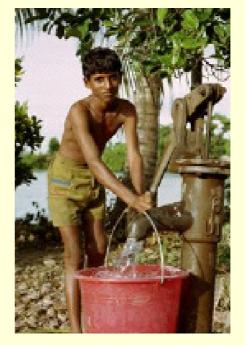
- Availability of and access to freshwater are among the most critical natural resources issues facing the world
- 2 billion people in 40 countries are currently affected by inadequate water supply
- Groundwater is a critical part of this resource



2nd UN World Water Development Report, March 2006

#### Value of Groundwater (when you have it)




- Inexpensive source of safe water
- Generally does not require treatment
- Long-distance transport not necessary
- Not lost through evaporation or runoff
- Reservoir to buffer against extended drought

## Groundwater

- Represents 98% of world's liquid freshwater supply
- Provides:
  - 50% of world's potable water supply
  - 40% of industrial demand
  - 20% of water used in irrigated agriculture

UNESCO Water Portal Weekly Update No. 103: Groundwater 22 July 2005





http://www.banglabangla.org/ kyag/images/BOY%20AT %20WATER%20PUMP %20DHAKA.jpg

#### **Groundwater in Percent of Total Public** Water Supply\*

| Percent  | European Countries                                                              |
|----------|---------------------------------------------------------------------------------|
| 80 - 100 | Austria, Denmark, Italy, Iceland,<br>Switzerland                                |
| 60 - 80  | Germany, Luxembourg, Netherlands,<br>Portugal                                   |
| 40 - 60  | Belgium - Flanders, Finland, France,<br>Greece, Ireland, Sweden, Czech Republic |
| 20 - 40  | Spain, United Kingdom                                                           |
| 0 - 20   | Belgium - Brussels, Norway                                                      |

\*EEA, Groundwater Quality and Quantity in Europe (1999)

## **Groundwater Facts for U.S.**

- Source of drinking water for 50% of total population and 95% of rural population
- Decentralized wastewater treatment systems (septic tanks) used in 25% of U.S. homes
- 168,000 viral illnesses and 34,000 bacterial illnesses estimated to occur each year from drinking groundwater contaminated from septic systems

# Groundwater Facts for U.S. (Continued)

- Prevention requires properly designed and operated septic systems with adequate horizontal setback from drinking water supply wells
- EPA permits states to regulate setbacks. (States generally recommend safe horizontal distance to be 20 to 60 meters)
- Properly constructed wells that prevent seepage of surface waters

EPA 832-8-03-001 (March 2003)

## **Groundwater in Mexico**

- 75% rely on groundwater for drinking and other domestic needs
- 57% rely on for agriculture
- Virtually all aquifers subject to qualitative degradation
- Overdraft and quality decline could render substantial portions unusable in future
- In Merida, the upper 20 m is unfit for human consumption
- Yucatan Peninsula has heavy contamination from human, solid, and animal wastes

**U.S. National Research Council, 2007** 

#### UN Division for Sustainable Development Agenda 21: Chapter 18

 The extent and severity of contamination of unsaturated zones and aquifers have long been underestimated owing to the relative inaccessibility of aquifers...

#### UN Division for Sustainable Development Agenda 21: Chapter 18

- The extent and severity of contamination of unsaturated zones and aquifers have long been underestimated owing to the relative inaccessibility of aquifers...
- The protection of groundwater is ...an essential element of water resource management.



"the science and practice of effecting healthful and hygienic conditions"



#### "the science and practice of effecting healthful and hygienic conditions"

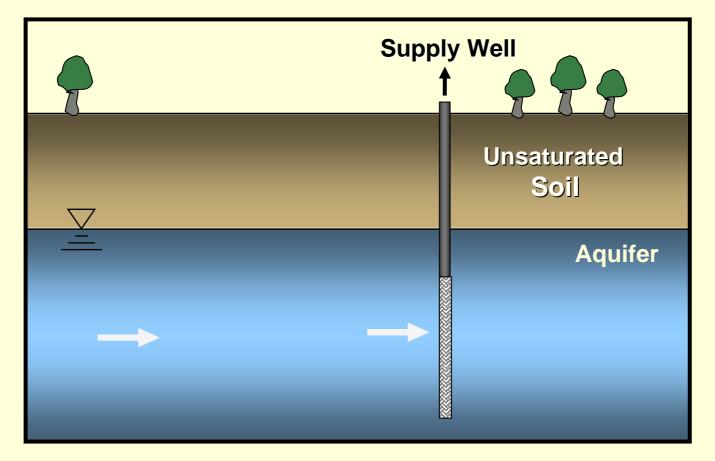
WHO Guidelines for drinking-water quality:

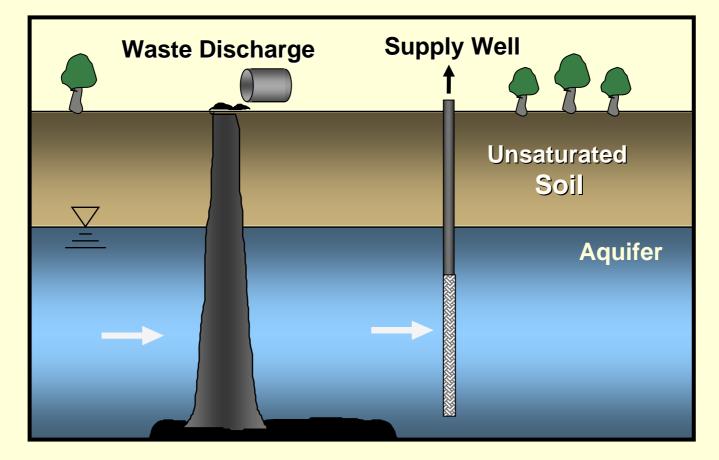
"Drinking-water quality is an issue of concern for **human health** in developing and developed countries world-wide. The risks arise from **infectious agents, toxic chemicals** and radiological hazards."

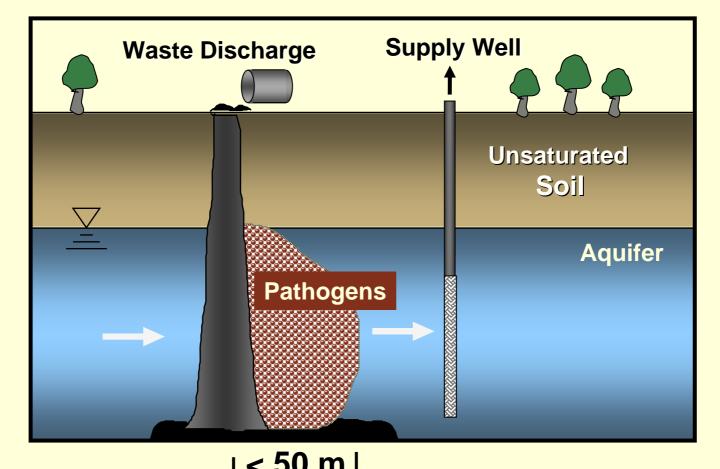
## **Sanitation**

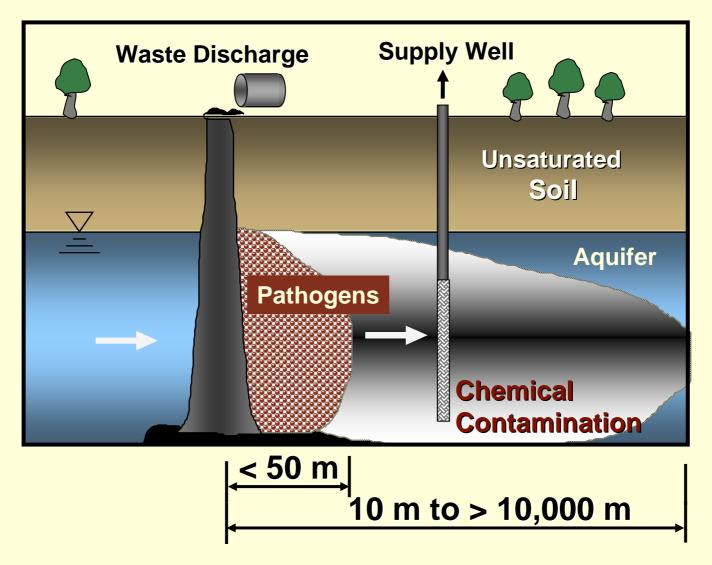
#### "the science and practice of effecting healthful and hygienic conditions"

WHO Guidelines for drinking-water quality:


"Drinking-water quality is an issue of concern for human health in developing and developed countries world-wide. The risks arise from infectious agents, toxic chemicals and radiological hazards. Experience highlights the value of preventive management approaches spanning from water resource to consumer."


# **Nitrate in Drinking Water**


- EPA also recognizes nitrate contamination of groundwater as a problem in the U.S.
- An estimated 9.4% of private wells exceed nitrate-nitrogen drinking water standard of 10 mg/L
- High nitrate results from fertilizer application and animal feed lots as well as from septic systems


#### **Chemical Contaminants in Groundwater**

| Contaminant                          | Source                                                                           |  |
|--------------------------------------|----------------------------------------------------------------------------------|--|
| Nitrate                              | Fertilizer, manure, human wastes                                                 |  |
| Salinity                             | Sea water intrusion, irrigation return flow, saline aquifers                     |  |
| Pesticides                           | Use in agriculture                                                               |  |
| Volatile Organic<br>Compounds (VOCs) | Petroleum usage, cleaning of laundry, engines, electronic parts                  |  |
| Heavy Metals                         | Manufacturing processes, aquifer<br>minerals, mineral/wastewater<br>interactions |  |









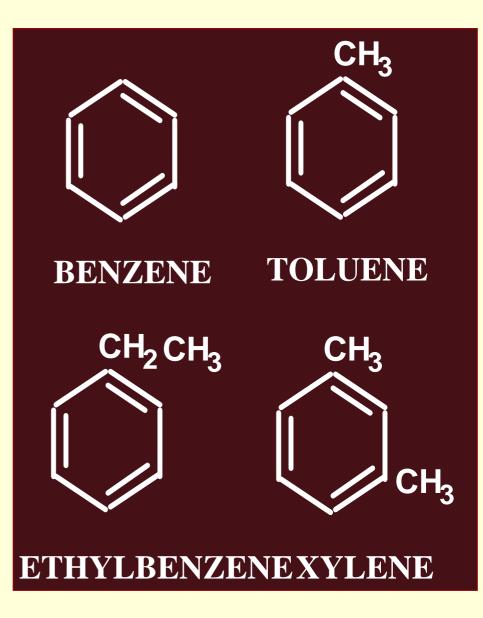


#### **Biological vs. Chemical Contamination** of Groundwater

| Biological             | Chemical              |
|------------------------|-----------------------|
|                        | (persistent soluble)  |
| Disappears quickly     | Disappears slowly     |
| Filtered easily        | Not filtered easily   |
| Travels short distance | Travels long distance |
| Short term problem     | Long term problem     |
| Acute onset            | Chronic onset         |
| Easily monitored       | Difficult to monitor  |

# **Contaminant Flushing Related to Turnover Time**

- Rivers days to years
- Lakes years to centuries
- Groundwater centuries to millennia

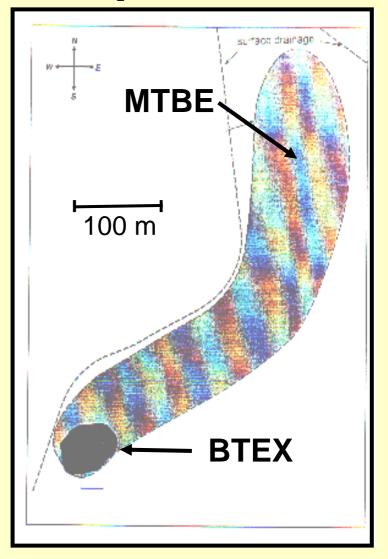

#### Volatile Organic Compounds in U.S. Groundwater\*

- Factors associated with VOCs in GW
  - Septic tanks
  - Urban land usage
  - Hazardous waste facilities
  - Gasoline storage and release facilities
- Most prevalent VOCs
  - Chloroform
  - Trichloroethene and tetrachloroethene

– MTBE

\*USGS Circular 1292 (2006)

BETX Compounds are Anaerobically Biodegradable




#### Methyl Tertiarybutyl Ether Plume from Gasoline Spill

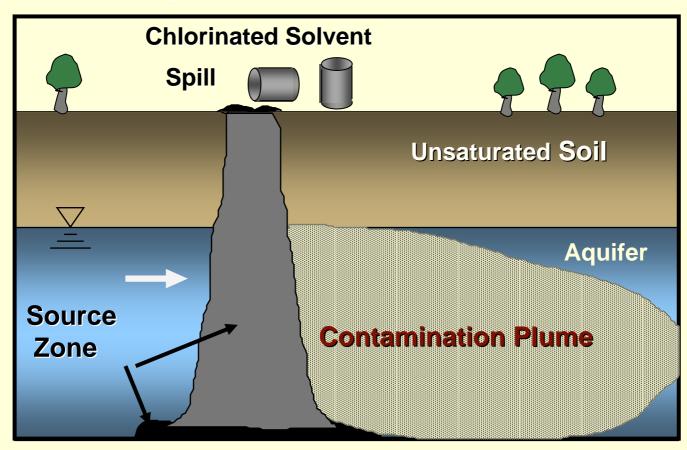


## MTBE

Vandenberg Air Force Base November 1997



## CHLORINATED SOLVENTS


# $\begin{array}{c} \mathsf{CHCI}=\mathsf{CCI}_2 & \mathsf{CCI}_2=\mathsf{CCI}_2 \\ \textbf{TCE} & \textbf{PCE} \end{array}$

CCI<sub>3</sub>CH<sub>3</sub> TCA

CCI<sub>4</sub> CT

## **Groundwater Contamination with Chlorinated Solvents**

- Denser than water
- Penetrate groundwater surface



#### **Impact of TCE on Groundwater**



- 3.84 liters of TCE can contaminate 80,000 m<sup>3</sup> of groundwater to above WHO standard of 70 µg/L
- One years supply for 1000 people at 200 L/d


## **Groundwater Contamination from Chemicals in the United States**

- 300,000 to 400,000 sites
- \$750 billion Estimated cleanup cost
- Most frequently detected organic contaminants are chlorinated solvents
  - First: Trichloroethene (TCE)
  - Second: Tetrachloroethene (PCE)
  - Sixth: 1,1,1-Trichloroethane (TCA)

(National Research Council, Alternatives to Ground Water Cleanup (1994)

## **Prevention Using Properly Designed Chemical Storage Tanks**





Boremco.com Beldingtank.com Baxterplastics.com



#### **Arsenic in Bangladesh Groundwater**

- Arsenic in groundwater poses a health risk to 57 million people in Bangladesh
- Arsenic in surface soil can be converted to a soluble form by anaerobic bacteria, allowing it to leach down to contaminate groundwater\*



Science and Development Network, 20 April 2006

\*Polizzotto et al., *Proc. National Academy of Science*, 102:18819 (2005); *Chemical Geology*, 228:97 (2006); *Nature*, 454:505 (2008).



- Groundwater is a most valuable resource that is greatly in need of protection
- Procedures for protection from pathogens are well known, relatively economical, and generally applied

# Summary (Continued)

- Chemical contamination is widespread, insidious, long lasting, and exceedingly expensive to cleanup
- Protection from chemical contamination is seldom addressed nor is the need to do so widely recognized
- Protection from chemical contamination is relatively easy and inexpensive
- Greater action by governments is here needed as is education of the public about the need

