

Assessment of Transboundary Aquifers (TBA)

Transboundary Aquifers of Europe

Lena Heinrich

Berlin , 2011

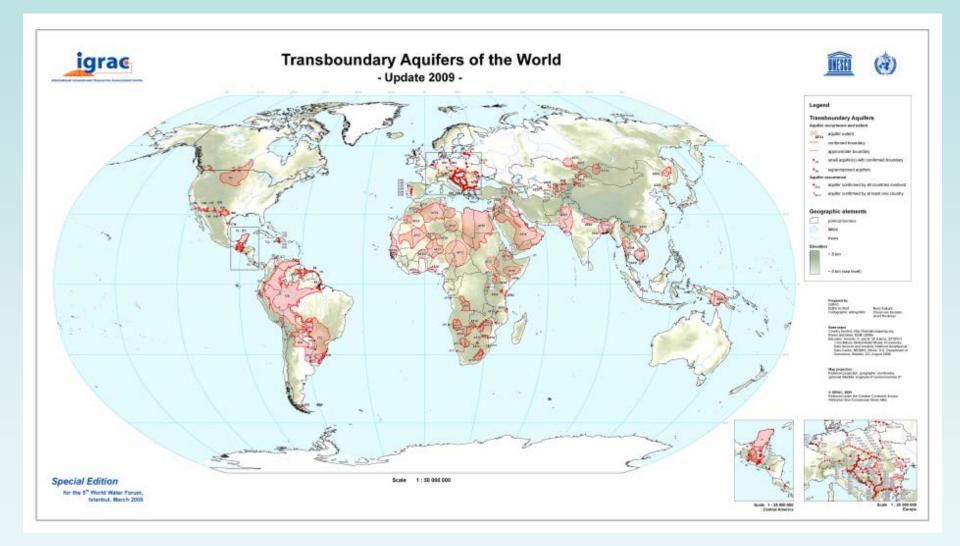
Contents:

- **1. Introduction IGRAC**
- 2. Global Transboundary Aquifer (TBA) Assessment
- 3. Transboundary Aquifers (TBA) of Europe

What is IGRAC?

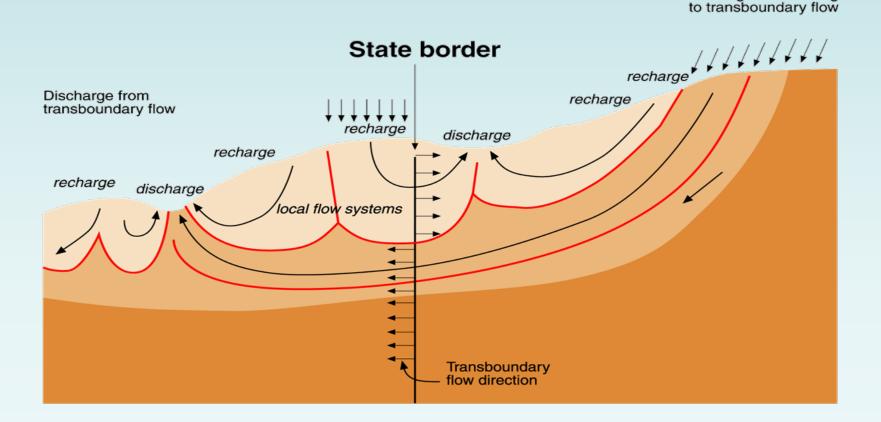
- IGRAC International Groundwater Resource Assessment Centre is an independent foundation working under the auspices of UNESCO and WMO
- IGRAC facilitates and promotes global sharing of information and knowledge required for sustainable groundwater resources development and management
- Focused on information and knowledge management, transboundary aquifer assessment and groundwater monitoring
- Receives financial support from the government of The Netherlands
- Located in Delft, The Netherlands.

TBA Assessment at IGRAC


ISARM Regional Activities

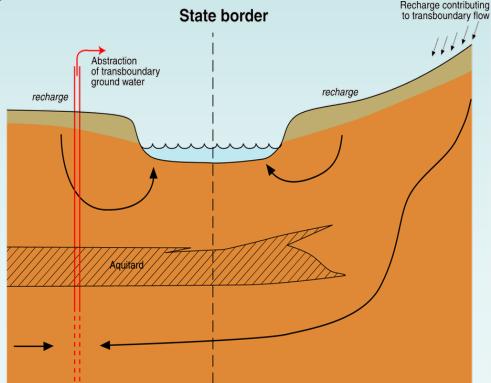
(cooperation with OAS, SADC, INWEB, UNECE, OSS, GWP-MED, GEF, UNEP, UNDP..)

- www.isarm.org
- **UNECE Assessments in Europe and Asia**
- Participation in GEF (Global Environment Facility) projects
- a TBA Course, contribution to WWAP, ...
- A map Transboundary Aquifers of the World


Global Assessment of Transboundary Aquifers (TBA)

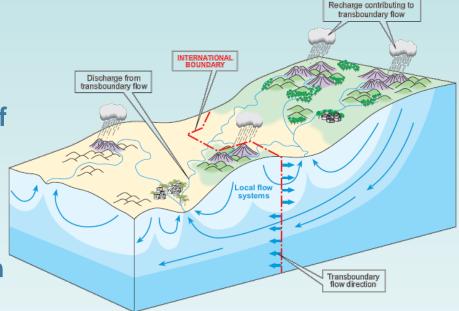
Transboundary Aquifers Assessment

 Transboundary aquifer or transboundary aquifer system refers to an aquifer or aquifer system, parts of which are situated in different States


Recharge contributing

Transboundary Aquifers Assessment

- The fact: many aquifers cross the political borders
- Potential cross-boundary problems: changes in groundwater flows, levels, volumes (quantity) and dissolved State substances (quality)
- Actions: TBA characterisation and an appropriate management
- Benefits: eliminating potential sources of conflict and improving the overall benefit from groundwater.

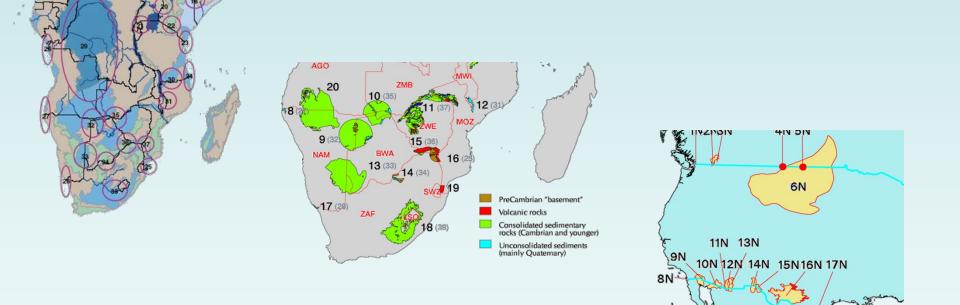


TBA Assessment Rationale

What does a TBA assessment encompass?

- ISARM programme: hydrogeological, legal, socioeconomic, institutional and environmental aspects/facets of TBAs
- In practice, mostly a hydrogeological assessment but other aspects are very much present and equally relevant

To date UN, GEF and EU have already accumulated valuable experience however there are still no comprehensive guidelines for TBA assessment.


TBA assessment (HY), the steps:

- Delineation and description
- Classification, diagnostic analysis and zoning
- **Data harmonisation and information management**
- Delineation and description
 - "inventory" or "characterisation" (stage and scale dependent)
 - > chiefly about collecting, combining and interpreting the field information
- Classification, diagnostic analysis and zoning
 - information necessary for decision-making (problems, opportunities, most responsive aquifers and aquifer zones)
- Data harmonisation and information management
 - Extra dimension in an international context (more difficult, more elaborate and politically sensitive)

Step 1: Delineation and Description

- chiefly about collecting, combining and interpreting the field information
- " "inventory" or "characterisation" (stage and scale dependent)

Step 1: Delineation and Description

- A TBA description should a.o. include info recharge/discharge mechanism and hydraulic properties
- Superimposed on these hydrogeological characteristics are the anthropogenic influences such as abstraction and pollution from various sources.
- Input for the DPSIR: status pressure factors, GW quality and quality problems, management measure, future trends.

Aquifer No. 1: Osh Aravoij		Shared by: Uzbekistan and Kyrgyzstan						
Type 5, Medium links to surf	ace water systems, groundwater f	lows from	Uzbekistan to Kyrgyzstan					
	Uzbekistan		Kyrgyzstan					
Area (km²)								
Water uses and functions (percentage of total abstraction)	Drinking water supply (25-50%) irrigation, mining, livestock (<25		Drinking water supply (25-50%), irrigation					
Pressure factors	Agriculture, industry, waste disposal		Agriculture					
Problems related to groundwater quantity	Polluted water drawn into aquifer		Lack of relevant data to be quantified					
Problems related to groundwater quality	Serious problems with pesticides moderate problems with heavy slight problems with hydrocarbo radioactive elements	netals,	Lack of relevant data to be quantified					
Transboundary impacts	Decline of groundwater level, groundwater pollution		Lack of relevant data to be quantified					
Groundwater management measures	Need to be improved: transboundary institutions, moitoring of groundwater quantity and quality, need to be applied: abstraction management, efficiency of use, mapping, good agricultural practices, integrated river basin manage ment, treatment of industrial effluents, data exchange		Need to improved: transboundary institutions monitoring of groundwater quantity and quality					
Status and what is most needed	Improvement of the monitoring groundwater quantity and quality		Improvement of the monitoring of groundwater quantity and quality					
Future trends and prospects	5 1 7 1 7		Expected pressure on the water resources due to economic growth and climate change					

5.16, ARGENTINA - BRASIL - PARAGUAY - URUGUAY

SISTEMA ACUIFERO TRANSFRONTERIZO GUARANI - SAG ARGENTINA-BRASIL-PARAGUAY-URUGUAY

El Sistema Acuifero Transfronterizo Guarani esta localizado en el subsuelo de la Cuenca Hidrográfica del Plata y se extiendo desde la euenca sedimentada del Parani hasta la Cuenca del Chaco-Parani. Con una extensión aproximada a los 1,2 millones de km3 esta subyacente a cuatro países: Argentina, Brasil, Paraguny y Uraguay. El elima se caracteriza como humedo o subhumedo con precipitaciones entre 1200 a 1500 mm. Cerez de 20 millones de habitantes se encuentran en esta área. El agua es utilizada principalmente para abastecimiento humano, lazer e industria.

El acuífero Guarani esta conformado por camadas arenosas que se encuentran depositadas en la cuenca sedimentaria del Barana desde el Mesozoico (periodos trástico, jurasico y eretaceo inferio) entre 200 y 132 millones de anos, que constituyen las formaciones geológicas Pirambóia y Botucatu en Brasil (las primeras formaciones se encuentran con el nombre Buena Vista en Uruguay y las segundas con el nombre Misiones en Paraguay, Tacuarembo en Uruguay y en Argentina).

Las áreas de alloramiento ocurren en dos fajas situadas al oeste y al este del área de ocurrencia y corresponden al 10% de la extensión total del acuitero, mientras el restante 90% del acuitero es confinado. El potencial espoltable estimado es de 40 km2ánio. Los cuadats de pozos varian entre 60 a 200 m2/h en las áreas adyacentes a los afloramientos y de 200 a 400 m2/h en las áreas de mayor confinamiento. Su espesor medio es de 250 m.Las aguas son bicarbonatádas calcicas y magnesiacas en las áreas próximas al afloramiento y son sodicas en las áreas mas profundas. El pH es alcalino y los valores de residuos secos varian de 200 a 600 mg/h. La temperatura varia de 25 a 63C.

Hay vacios de conocimiento ligado a dos aspectos en particular a la definitación de las áreas de descarga y la ecurrencia de anomalías hidroquímicas como exceso de fluor en algunos pozos. Importancia regional por la magnitud de la reserva.

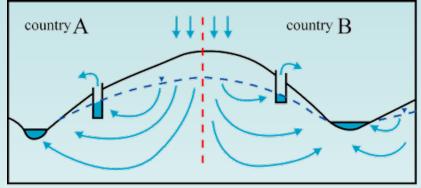
El sistema acuífero reviste mucha importancia a nivel regional y para cada país como elemento básico para el desarrollo socio-econômico.

El área de recarga del acuifero, que tiene una importante función en el mantenimiento del equilibrio hidrologíco, es el area mas vulnerable y necesita especificas medidas de proteccion.

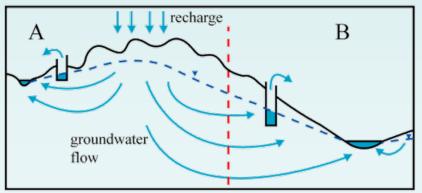
Los cuatro países están trabajando juntos en un proyecto empezado en el año 2002, sobre la gestión sostenible y protección del acuífero con cooperación del GEF/Banco Mundial/OEA,

Referencias

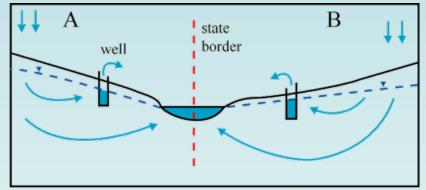
Mapa Hidrogeológico do Aquifero Guarani, 1999, Campos, H.C.

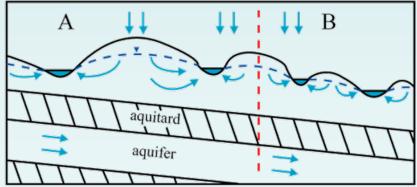

 Mapa Hidrogeológico da América do Sul (papel, 1996, Escala 1:3.000.000, UNESCO, CPRM, DNPM)

Autores: Argentina: Ofelia Tujehneider, con la colaboración de Marta Paris, Mario Hernández, Brasil: Julio Thadea Kettelhut, Colaboradores: Uriel Duarte-ABAS, Geroncio Rocha-DAEESP, Mara Akie Iritani, IG/SP, Adriana Ferreira, Fabricio Cardoso, Helio Olixeira, Claudia Lima-SRH/MMA.Paraguay: Celso Velásquez con la colaboración de Wilfrido Castro, Ana Maria Castillo, Uruguay: Juan Ledesma con la colaboración de DINAMIGE OSE.


(TBA Activities Americas)

- Physiographic, Demographic & Water Use
- Geological Setting of Aquifer
- Water Quantity & Quality
- Importance and need for TBA
- TBA cooperation
- References
- Authors



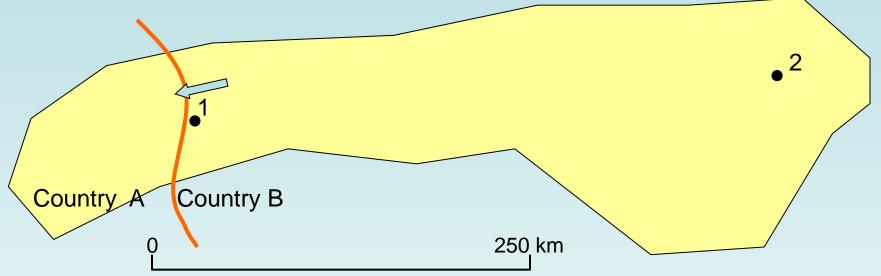

(1) state border follows surface water catchment and groundwater divide, little transboundary groundwater flow.

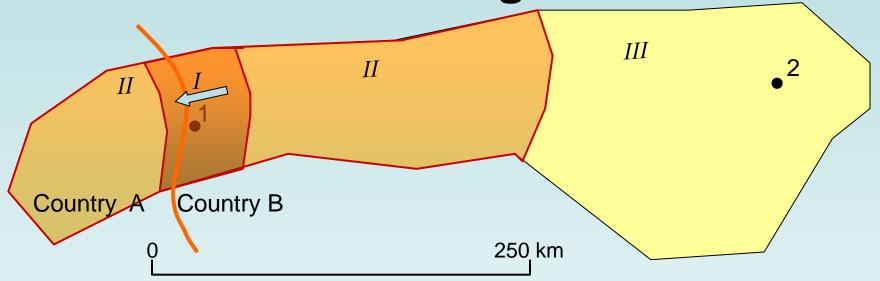
(2) Surface water and groundwater divides separate from state border, recharge in one country, discharge in adjacent.

(3) state border follows major river or lake, alluvial aquifer connected to river, little transboundary flow.

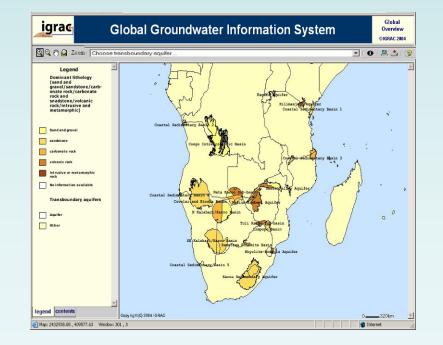
(4) Large deep aquifer, recharged far from border, not connected to local surface water and groundwater.

- Input for classification:
 - aquifer size and hydraulic properties,
 - vulnerability,
 - current functions,
 - observed or perceived stresses,
 - possible groundwater interferences, etc.
- Input for diagnostics:
 - inventory of major perceived issues and problems;
 - overview of possible actions
 - priority and feasibility study, stakeholders and institutional analysis.





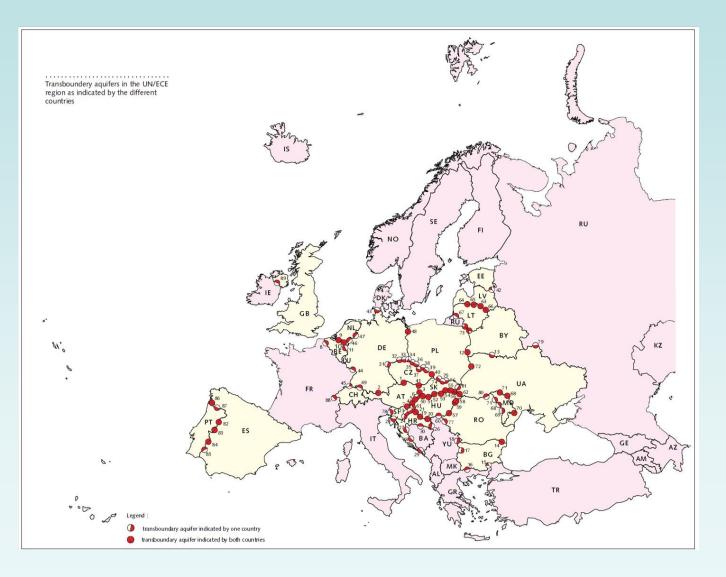
- Activities at location 2 in country B will be much less risky for the aquifer in country A than activities at location 1
- Effects resulting from causes at larger distance will be smaller and come with more retardation
- General flow direction does matter



- Activities at location 2 in country B will be much less risky for the aquifer in country A than activities at location 1
- Effects resulting from causes at larger distance will be smaller and come with more retardation
- General flow direction does matter

Step 3: Harmonisation & info management

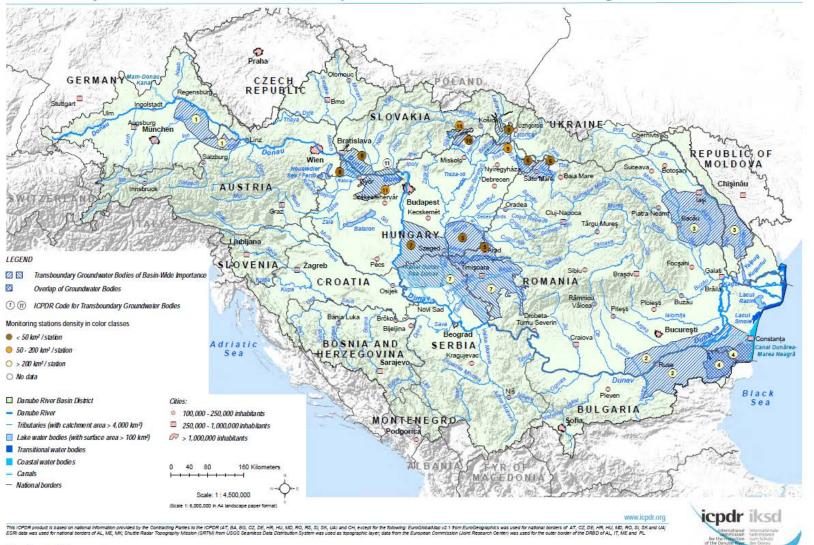
- Basically technical activity: harmonisation of formats, classifications, terminologies, reference systems, levels, software and hardware specific, etc.
- Ideally, on-line synchronised access to distributed information services (data and information remain at the source!)

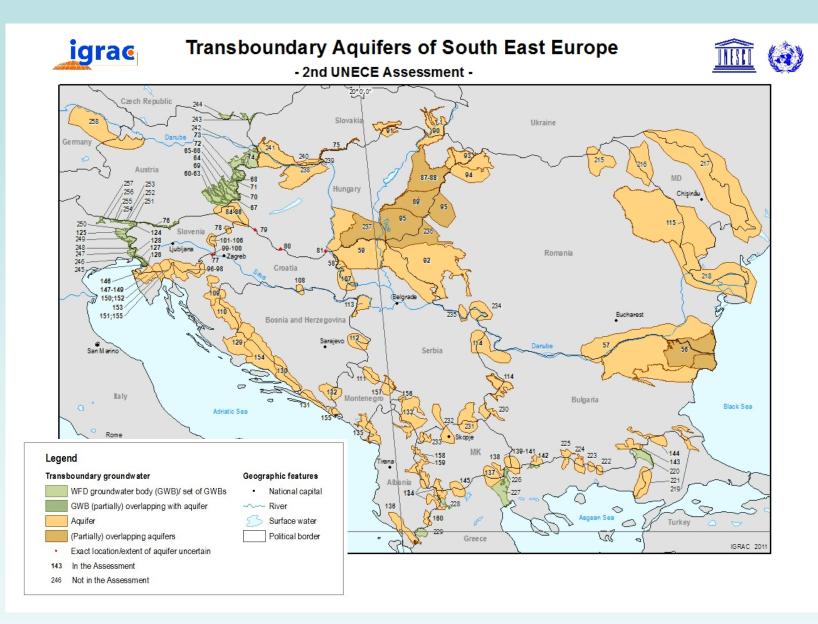


TBA Assessment in Western and Central Europe

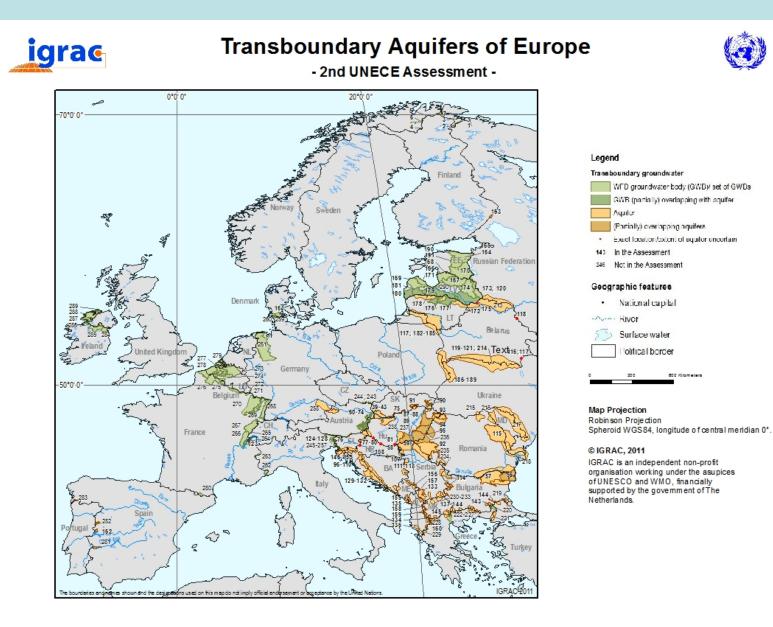


UNECE TBA Inventory 1999


TBAs of the World: Detail Europe


Danube River Basin District: Transboundary Groundwater Bodies of Basin-Wide Importance and their Transnational Monitoring Network

MAP 4



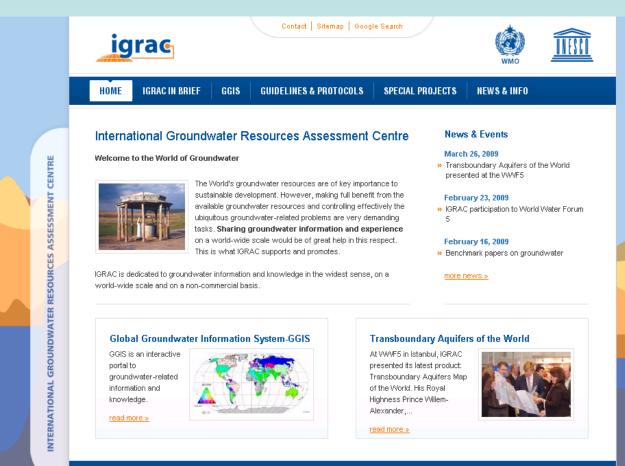
Challenges ahead:

- Moving from delineation (inventory stage) to quantitative descriptions
- Cartographic challenges of aquifer systems and adding 3rd dimension to delineations
- **Data Harmonisation**

1.	Copy	Wiap Text	General	- Conditional		Bad Check Co	Good Explanator	Neutral	-	Insert Dele		Σ AutoSum	ZI	
	Format Painter			Formatting *	as Table *			Tool tool				Q Clear *	Filter* 1	Select .
	board G Fent G	Alignment G	Number	- 91		Style	5			Cell	5	e e	diting	
	25 • <u>6</u> <u>fr</u>													
A	В	Н		J	K	L	M	N	0	Ρ	Q	R	S	
0	ATTRIBUTE (Country information)	CATEGORY	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6						
_	Aquifer code	Identification	01											-
	Aguiler name	Identification												
	UN code shared country	Identification												
	Latitude (central point)	Identification												
	Longitude (central point)	Identification												
	Total area	Physiography	<100	100-1000	1000-10000	10000-100000	>100000	info not available						
	Lowest point	Physiography	<0	0.50	50-100	100-500	>500	info not available						
	Low elevated area (<150 m + m.s.l.) as a % of total area	Physiography	0	1.25	25-50	50-75	>75	info not available						
	Highest point	Physiography	<100	100-1000	1000-3000	3000-5000	>5000	info not available						
	High elevated area (>2000 m + m.s.1.) as a % of total area	Physiography	0	1-25	25-50	50-75	>75	info not available						
	Low relief area (relief roughness<5%) as a % of total area	Physiography	0	1-25	25-50	50-75	>75	info net available						
	High relief area (relief ratio>40%) as a % of total area	Physiography	0	1-25	25-50	50-75	>75	info not available						
3	Average annual precipitation	Physiography	<100	100-500	500-1000	1000-2500	>2500	info not available						
	Extent of and land (P/ET<0.2) as a % of total land	Physiography	0	1-25	25-50	50-75	>75	info net available						
	Extent of humid land (P/ET>0.65) as a % of total land	Physiography	0	1-25	25-50	50-75	>75	info not available						
6	Total population	Demography	<10000	10000-50000	50000.100000	100000-500000	>500000	info not available						
	Population density	Demography	<10	10-100	100-500	500-1000	>1000	info not available						
	Year of population estimate	Demography	<1990	1990-1994	1995-1999	2000-2004	>2004	info not available						
9	Population growth rate	Demography	<0.0	0-1.0	1.0-2.0	2.0-3.0	>3.0	info not available						
	Seasonal crop area (as a % of total area)	Agriculture and economics	<10		20-30	30-40	>40	info not available						
1	Perennial crop area (as a % of total area)	Agriculture and economics	<5	1-5 5-10	5-10	10-15	>15 >20	info not available info not available						
3	Imigated land area (as a % of total area)	Agriculture and economics	<1990	5-10 1990-1994		2000-2004	>20			_				
4	Year or period of imigated land estimate Aquifer type	Agriculture and economics Aquifer characteristics		Fissured	1995-1999 Combined	2000-2004	22004	info net available info net available						
	Reservoir system	Aquifer characteristics	Intergranular Single	Multi layered	Contrased			info net available						
	Deminant lithelogy	Agailer characteristics	Sand and gravel	sandstone	carbonate rock	volcanic reck	intrusive or metamo							
	Deminant hydraulic state	Agailer characteristics	Phreatic	Confined	Semi-confined	Concensor Force.	and white of inclusion	info not available						
	Predominant groundwater flow direction	Ausifer characteristics	S-N	N-S	E.W	W-E	No predominace	info not available						
	Minimum depth to lower aquifer boundary	Aquifer characteristics	<10	10-25	25-50	50-75	>75	info net available						
	Maximum depth to lower aquifer boundary	Aguifer characteristics	<100	100-200	200-300	300-400	>400	info not available						
	Minimum depth to upper aquifer boundary	Aquifer characteristics	<10	10.25	25-50	50-75	>75	info not available						
2	Maximum depth to upper aquifer boundary	Aquifer characteristics	<100	100-200	200-300	300-400	>400	info not available						
	Minimum hydraulic conductivity	Aquifer characteristics	<1	1-10	10-50	50-100	>100	info not available						
	Maximum hydraulic conductivity	Aquifer characteristics	<1	1-10	10.50	50-100	>100	info not available						
	Estimated volume in storage	Groundwater quantity	<10000	100000-30000	50000-100000	100000-500000	>500000	info not available						
	Mean annual groundwater recharge	Groundwater quantity	<10	10-25	25-50	50-100	>100	info not available						
	Main recharge source	Groundwater quantity	Precipitation	Surface water	Imigation	Artificial		info not available						
	Minimum struck level	Groundwater quantity	<10	10-25	25-50	50-75	>75	info not available						
	Maximum struck level	Groundwater quantity	<100	100-200	200-300	300-400	>400	info not available						
	Minimum rest level	Groundwater quantity	<10	10-25	25-50	50-75	>75	info not available						
	Maximum rest level	Groundwater quantity	<100	100-200	200-300	300-400	>400	info not available						
2	Annual groundwater abstraction	Groundwater quantity	<10				>100	info not available						
	Year of abstraction estimate	Groundwater quantity	<1990	1990-1994 10000-25000	1995-1999	2000-2004	>2004 >100000	info net available						
	Annual spring outflow	Groundwater quantity	<10000	10000-23000	25000-50000	50000-100000	>100000	info not available			-	-		
	Sheet1 / Sheet2 / Sheet3 / 93								_	_	- 11	-	_	-
												100%		

Thanks

United Nations Educational, Scientific and Cultural Organization


World Meteorological Organization

Government of The Netherlands

IGRAC Portal

All rights reserved © IGRAC

Privacy Policy | Disclaimer

www.un-igrac.org